Benefits of Marjoram (Origanum majorana) and Chamomile (Matricaria chamomilla) in Preserving some Foods from Spoilage

Main Article Content

Ibtisam Fareed Ali Karm

Abstract

   A global scientific study found that reducing the excessive and indiscriminate use of antimicrobial medicinal drugs in all their forms significantly improved food safety. We made aqueous and organic extracts (Ex1, Ex2, and Ex3) from two plants (Origanum majorana and Matricaria chamomilla) to create the best alternative form for antimicrobial preventive agents that cause food spoilage. Traditional methods determined the most essential compounds in plants, and we used the FTIR analysis technique for all treatments to observe impurities such as glycosides, alkaloids, flavonoids, carbohydrates, and phenolic substances. This study points to synergistic activity for plant extracts (Origanum majorana and Matricaria chamomilla). The safe use of antimicrobials that are of natural origin, as much as possible, is necessary to manage the risks in order to reduce the emergence of microorganisms resistant to traditional antibiotics.

Article Details

How to Cite
[1]
Karm, I.F.A. 2024. Benefits of Marjoram (Origanum majorana) and Chamomile (Matricaria chamomilla) in Preserving some Foods from Spoilage. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 61–69. DOI:https://doi.org/10.30526/37.3.3504.
Section
Biology

How to Cite

[1]
Karm, I.F.A. 2024. Benefits of Marjoram (Origanum majorana) and Chamomile (Matricaria chamomilla) in Preserving some Foods from Spoilage. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 61–69. DOI:https://doi.org/10.30526/37.3.3504.

Publication Dates

References

Sevindik, M.; Uysal, I. Food spoilage and Microorganisms. Turk. J. Agric. Food Sci. Technol. 2021, 9, 1921–1924. DOI: https://doi.org/10.24925/turjaf.v9i10.1921-1924.4658.

Baindara, P.; Mandal, S.M. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods. 2022, 11(16), 2415. DOI: 10.3390/foods11162415

Ziarno, M.; Kozłowska, M.; Scibisz, I.; Kowalczyk, M.; Pawelec, S.; Stochmal, A.; Szleszynski, B. The effect of selected herbal extracts on lactic acid bacteria activity. Appl. Sci. 2021, 11, 3898. DOI: https://doi.org/10.3390/app11093898.

Kozłowska, M.; Scibisz, I.; Przybył, J.L.; Laudy, A.E.; Majewska, E.; Tarnowska, K.; Małajowicz, J.; Ziarno, M. Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material. Appl. Sci. 2022, 12(19), 9871. DOI: https://doi.org/10.3390/app12199871.

Majeed, O.S. The Effect of the Crude Terpenoids Compounds of Melia azedrach Leaves and Fruits on Some Biological Aspects of Whitefly Bemisia tabaci. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2023, 36(1), 59-73. DOI: https://doi.org/10.30526/36.1.2951.

Gutiérrez, R.M.P.; Jerónimo, F.F.M.; Soto, J.G.C.; Ramírez, A.M.; Mendoza, M.F.E. Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of Cinnamomum verum, Origanum majorana, and Origanum vulgare and their anti-diabetic capacity in zebrafish (Danio rerio). Heliyon. 2022, 8(1), e08682. DOI: https://doi.org/10.1016/j.heliyon.2021.e08682.

Sebastian, D.; Shankar, K.G.; Ignacimuthu, S.; Fleming, A.T. Detection of synergistic effect of three plant extracts against pathogenic bacteria. International Journal of Research and Analytical Reviews. 2019, 6(2), 438-449.

Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric & Food Secur. 2017, 6, 51. DOI: https://doi.org/10.1186/s40066-017-0130-8.

Bhardwaj, K.; Dubey, W. Sweet Marjoram (Origanum majorana L.) As A Magical bioprotective Agent Against Food Spoilage: A Review. Carpathian Journal of Food Science and Technology, 2020, 12, 5-15. DOI: https://DOI:10.34302/crpjfst/2020.12.1.1.

Fradi, A.J. The Effective Concentration of the Crude Extract of Mentha picata and Eucalyptus against the Growth of Fusarium oxysporum. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022, 35(4), 1-4. DOI: https://doi.org/10.30526/35.4.2848.

Nagappan, R. Evaluation of aqueous and ethanol extract of bioactive medicinal plant, Cassia didymobotrya (Fresenius) Irwin and Barneby against immature stages of filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Asian Pac J Trop Biomed. 2012, 2, 707-11. DOI: https://doi.org/10.1016/s2221-1691(12)60214-7.

Irfan, S.; Ranjha, M.M.A.N.; Nadeem, M.; Safdar, M.N.; Jabbar, S.; Mahmood, S.; Murtaza, M.A.; Ameer, K.; Ibrahim, S.A. Antioxidant Activity and Phenolic Content of Sonication- and Maceration-Assisted Ethanol and Acetone Extracts of Cymbopogon citratus Leaves. Separations. 2022, 9(9), 244. DOI: https://doi.org/10.3390/separations9090244.

Karm, I.F.A. Exam the Synergistic Potency of Tea Leaves Extract (Camellia Sinensis) and Moringa Leaves (Moringa Oleifera) as an Inhibitor of the Growing of Some Bacteria that Cause. Alinteri Journal of Agriculture Sciences 2021, 36, 234-238. DOI: https://doi.10.47059/alinteri/V36I2/AJAS21137.

Mustafa, I.; Faisal, M.N.; Hussain, G.; Muzaffar, H.; Imran, M.; Ijaz, M.U.; Sohail, M.U.; Iftikhar, A.; Shaukat, A.; Anwar, H. Efficacy of Euphorbia helioscopia in context to a possible connection between antioxidant and antidiabetic activities: a comparative study of different extracts. BMC Complementary Medicine and Therapies. 2021, 21(1), 62. DOI: https://doi.org/10.1186/s12906-021-03237-x.

Onuh, O.A.; Odugbo, M.; Oladipo, O.O.; Olobayotan, I. W. Phytochemical Investigation of the Crude and Fractionated Extracts of Two Nigerian Herbs, Mitragyna inermis (Wild) and Lawsonia inermis (Linn). BioRxiv 2021, 6, 446752. DOI: https://doi.org/10.1101/2021.06.02.446752.

Hameed, R.H.; Mohammed, G.J.; Hameed, I.H. Matricaria chamonbmilla: Bioactive Compounds of Methanolic Fruit Extract Using GC-MS and FTIR Techniques and Determination of its Antimicrobial Properties. Indian J. Public Health Res. Dev. 2018, 9, 223–228. DOI: https://doi.org/10.5958/0976-5506.2018.00213.9.

Bhattacharjee, M. Better visualization and photodocumentation of zone of inhibition by staining cells and background agar differently. J. Antibiot. 2015, 68, 657–659. DOI: https://doi.org/10.1038/ja.2015.49.

Radji, M.; Agustama, R.A.; Elya, B.; Tjampakasari, C.R.; Sinaga, E.. Antimicrobial activity of green tea extract against isolates of methicillin resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine. 2013, 3(8), 663-667 . DOI: https://doi.org/10.1016/S2221-1691(13)60133-1.

Clinical Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard M7-A5. Wayne, Pennsylvania, 2006.

Peerzada, T.; Gupta, J. Distribution of phytochemicals in stems and leaves of Cichorium intybus and Matricaria chamomilla: assessment of their antioxidant and antimicrobial potential. BioTechnologia 2018, 99, 119– 128. DOI: https://doi.org/10.5114/bta.2018.75655.

Lahreche, T.; Bradaie, M.L.; Hamdi, T. In vitro assessment of antioxidant activity, total phenolic and flavonoid contents of sweet marjoram (Origanum majorana L.) Extract. Int. J. Hortic. Agric. Food Sci. 2020, 4(4), 158-163. DOI: http://dx.doi.org/10.22161/ijhaf.4.4.4.

Alshehri, A.A.; Malik, M.A. Phytomediated Photo-Induced Green Synthesis of Silver Nanoparticles Using Matricaria chamomilla L. and Its Catalytic Activity against Rhodamine B. Biomolecules. 2020, 10(12), 1604. DOI: https://doi.org/10.3390/biom10121604.

Pakkirisamy, M.; Kalakandan, S.K.; Ravichandran, K. Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma caesia Roxb (Black Turmeric). Pharmacog. J. 2017, 9(6), 952-6. DOI: http://dx.doi.org/10.5530/pj.2017.6.149.

Boudieb, K.; Ait Kaki, S.A.S.; Oulebsir-Mohandkaci, H.; Bennace, A. Phytochemical Characterization and Antimicrobial Potentialities of Two Medicinal plants, Chamaemelum nobile (L.) All and Matricaria chamomilla (L.). International Journal of Innovative Approaches in Science Research, 2018, 2(4), 126-139. DOI: https://doi.org/10.29329/ijiasr.2018.173.2.

Ahani Azari, A.; Danesh, A. Antibacterial effect of Matricaria chamomilla alcoholic extract against drug-resistant isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Infect. Epidemiol. Microbiol 2021, 7(1), 29–35. DOI: https://doi.org/10.52547/iem.7.1.29.

Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.; Rocha, J. E.; Coutinho, H.D.; Salehi, B.; Tabanelli, G.; Montanari, C.; Del Mar Contreras, M.; Yousaf, Z.; Setzer, W.N.; Verma, D.R.; Martorell, M.; Sureda, A.; Sharifi-Rad, J. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol Res. 2018, 215, 76-88. DOI: https://doi.org/10.1016/j.micres.2018.06.010.

Hamza, N.H.; AL-Obaedi, A.I; AIjubory, I.S. Phytochemical Study with Evaluation the Antimicrobial Activity of Cressa cretica Plant Against Some Gram-Positive and Gram Negative Bacteria. Ibn AL-Haitham Journal For Pure and Applied Sciences. 2021, 34(3), 2021. DOI: https://doi.org/10.30526/34.3.2674.

Flores, Y.; Pelegrín, C.J.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Use of Herbs and Their Bioactive Compounds in Active Food Packaging. Aromat. Herbs Food Bioact. Compd. Process. Appl. 2021, 5, 323–365. DOI: https://doi.org/10.1016/B978-0-12-822716-9.00009-3.

Pedrosa, M.C.; Lima, L.; Heleno, S.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L. Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods. 2021, 10, 2213. DOI: https://doi.org/10.3390/foods10092213.

Ali, A.; Ali, M.; Nisar, Z.; Shah, S.M.A., Mustafa, I, Nisar, J.; Asif, R. Antibacterial Activity of Economically Important Medicinal Plants in Pakistan Against Different Bacterial Strains. Bioinformatics and Biology Insights. 2023, 17, 11779322231189374. DOI: https://doi.org/10.1177/11779322231189374.