Investigation of virulence factors in resistance and sensitive pseudomonas aeruginosa clinical isolates
DOI:
https://doi.org/10.30526/38.1.3512Keywords:
Protease, hemolysin, swarming, lipase, antibiotic patternsAbstract
The pathogen "Pseudomonas aeruginosa" is extremely hazardous for people with weak immune systems because it has several virulence factors and can resist antibiotics. During the time period between October 2022 and February 2023, 102 specimens from different clinical sources, including burn, mid-stream urine, wound, ear, and sputum were collected. From 102 clinical specimens, only 33 isolates (32.35%) of P. aeruginosa were identified by Phenotypic characteristics, a biochemical test, the Vitek-2 compact system, and confirmed by Conventional Polymerase Chain Reaction (PCR). The antibiotic susceptibility test AST was done by the Vitek 2-Compact system. The highest resistance percentages were for Cephalosporin category at 81.8% (Cefotaxime, Ceftazidime, and Cefepime), while the lowest percentage was for the Fluoroquinolone category at 42.4% (Ciprofloxacin and Norfloxacin); 18 (54.5%) of the isolates were categorized as MDR. The production rates of virulence factors investigated in all tested isolates were 100% for protease, hemolysin, and swarming, while the lipase production rate was 48.5%.
References
Cain, A. K.; L. M. Nolan; Sullivan, G. J.; Whitchurch, C. B.; Filloux, A.; Parkhill, J. Complete genome sequence of Pseudomonas aeruginosa reference strain PAK. Microbiology resource announcements. 2019; (8): 41, e00865-19. https://doi.org/10.1128/mra.00865-19.
Makhdoomi, M. A.; Abdo, E. M.; Ilyas, S. O.; Sedik, A. M.; Elsayed, A. A.; Alotaibi, M. S. Cellulitis left lower leg secondary to Pseudomonas aeruginosa bacteremia: case of community-acquired infection. International Surgery Journal. 2019; 6, 2, 604-607. https://doi.org/10.18203/2349-2902.isj20190413
Mahmood, H.; Nasir, G.; Ibraheem, Q. Relationship between pigments production and biofilm formation from local Pseudomonas aeruginosa isolates. The Iraqi Journal of Agricultural Science. 2020; 51. 5.1413-1419. https://doi.org/10.36103/ijas.v51i5.1151
Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The role of proteases in the virulence of plant pathogenic bacteria. International Journal of Molecular Sciences. 2019; 20(3): 672. https://doi.org/10.3390/ijms20030672
Rawlings, N. D. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2020; 1868 (2): 140345. https://doi.org/10.1016/j.bbapap.2019.140345
Gur, E.; Biran, D.; Ron, E. Z. Regulated proteolysis in Gram-negative bacteria—how and when?. Nature Reviews Microbiology. 2011; 9 (12): 839-848. https://doi.org/10.1038/nrmicro2669.
Fernández, L.; Breidenstein, E. B.; Hancock, R. E. Creeping baselines and adaptive resistance to antibiotics. Drug Resistance Updates. 2011; 14 (1): 1-21. https://doi.org/10.1016/j.drup.2011.01.001
O’Callaghan, R.; Caballero, A.; Tang, A.; Bierdeman, M. Pseudomonas aeruginosa Keratitis: Protease IV and PASP as Corneal Virulence Mediators. Microorganisms. 2019; 7(9): 281. https://doi.org/10.3390/microorganisms7090281
Auda, J.; Khalifa, M. CLONING AND EXPRESSION OF A LIPASE GENE FROM PSEUDOMONAS AERUGINOSA INTO E. coli. Iraqi Journal of Agricultural Sciences.2019; 50(3): 768-775. https://doi.org/10.36103/ijas.v50i3.693
Bender, J.; Flieger, A. Lipases as pathogenicity factors of bacterial pathogens of humans. in Handbook of hydrocarbon and lipid microbiology ed. 2010. https://doi.org/10.1007/978-3-540-77587-4_246
König, B.; Jaeger, K.; Sage, A.; Vasil, M.; König, W. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes. Infection and immunity. 1996; 64 (8): 3252-3258. https://doi.org/10.1128/iai.64.8.3252-3258.1996
Martínez, A.; Ostrovsky, P.; Nunn, D. N. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Molecular microbiology.1999; 34 (2): 317-326. https://doi.org/10.1046/j.1365-2958.1999.01601.x
Flegel, W. A. Pathogenesis and mechanisms of antibody‐mediated hemolysis. Transfusion. 2015;55(S2): S47-S58. https://doi.org/10.1111/trf.13147
Strateva, T.; Mitov, I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Annals of microbiology. 2011; 61 (4): 717-732. https://doi.org/10.1007/s13213-011-0273-y
Laabei, M.; Jamieson, W. D.; Lewis, S. E.; Diggle, S. P.; Jenkins, A. T. A. A new assay for rhamnolipid detection—important virulence factors of Pseudomonas aeruginosa. Applied microbiology and biotechnology. 2014; 98:7199-7209. https://doi.org/10.1007/s00253-014-5904-3
Chadha, J.; Harjai, K.; Chhibber, S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environmental Microbiology. 2022 24 (6): 2630-2656. https://doi.org/10.1111/1462-2920.15784
Partridge, J. D.; Nhu, N. T.; Dufour, Y. S.; Harshey, R. M. Tumble suppression is a conserved feature of swarming motility. Mbio. 2020; 11(3): e01189-20. https://doi.org/10.1128/mbio.01189-20
Fadhil, K. H.; Al-Mathkhury, H. J. F. Gentamicin Variably Affects amrZ and rhl gene Expression in Swarmer Cells of Pseudomonas aeruginosa. Iraqi Journal of Science. 2022; 2884-2890. https://doi.org/10.24996/ijs.2022.63.7.12
Grobas, I.; Polin, M.; Asally, M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. Elife. 2021; 10, e62632. https://doi.org/10.7554/eLife.62632
Rütschlin, S.; Böttcher, T. Inhibitors of bacterial swarming behavior. Chemistry–A European Journal. 2020; 26(5): 964-979. https://doi.org/10.1002/chem.201901961
Josephine, A.; Morello, P. A.; Mizel, G. H. E. Laboratory manual and workbook in and m. a. t. p. c. E. ke-7; 2003.
Al Mohaini M. et al. Enhancing lipase production of Bacillus salmalaya strain 139SI using different carbon sources and surfactants. Applied Microbiology. 2022; 2(1): 237-247. https://doi.org/10.3390/applmicrobiol2010017
Cheesbrough, M. District laboratory practice in tropical countries, part 2. Cambridge university press. 2005.
Latif, I. A. Swarming motility Patterns of Pseudomonas aeruginosa isolated from Otitis media. Tikrit Journal of Pure Science. 2018;20 (4) : 26-29. https://doi.org/10.25130/tjps.v20i4.1208
Rashad, F. F.; Obaid, S. S.; Al-kadhi, N. A. Association of Multidrug Resistance With Biofilm Formation in Pseudomonas aeruginosa Isolated from Clinical Samples in Kirkuk City. NTU Journal of Pure Sciences. 2022; 1 (4) :10-19. https://doi.org/10.56286/ntujps.v1i4.342
Mahdi, R. J. Detection of some virulence factor of Pseudomonas aeruginosa isolated from Burn'Patients and their surrounding environment and the biological activity of some extracts on it. A thesis, College of Science, University of Basrah. 2020. https://doi.org/10.35950/cbej.v26i108.5194
Chaudhary, N. A. et al. Epidemiology, bacteriologicaly profile, and antibiotic sensitivity pattern of burn wounds in the burn unit of a tertiary care hospital. Cureus. 2019; 11 (6). https://doi.org/10.7759/cureus.4794
Al-Hasan, A. R. Study of carbapenem resistance in Acinetobacter baumannii isolates from Kuwait. 2013.
Matsuo, Y. et al.. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC microbiology. 2021; 21:1-13. https://doi.org/10.1186/s12866-021-02094-5
Khosravi, A. D.; Mihani, F. Detection of metallo-β-lactamase–producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagnostic microbiology and infectious disease. 2008; 60 (1) :125-128. https://doi.org/10.1016/j.diagmicrobio.2007.08.003
Alkhulaifi, Z. M.; Mohammed, K. A. The Prevalence of Cephalosporins resistance in Pseudomonas aeruginosa isolated from clinical specimens in Basra, Iraq. University of Thi-Qar Journal of Science. 2023; 10: 1 (SI). https://doi.org/10.32792/utq/utjsci/v10i1(SI).1010
Abd Al Zwaid, A. J.; Al-Dahmoshi, H. O. M. Molecular detection of mexXY-oprM, mexPQ-opmE Efflux pumps in multi-drug resistant Pseudomonas aeruginosa isolates in patients referred to teaching hospitals in Babylon province, Iraq. Journal of Applied and Natural Science. 2022;14 (2) : 426-432. https://doi.org/10.31018/jans.v14i2.3411
Pandey, N.; Cascella, M. Beta lactam antibiotics. in StatPearls [Internet]: StatPearls Publishing 2022. Bookshelf ID: NBK545311
Arumugham, V. B.; Gujarathi, R.; Cascella, M. Third generation cephalosporins. 2019. Bookshelf ID: NBK549881
Alsaadi, L. A. S; Al-Dulaimi, A. A. F.; Rasheed Al-Taai, H. R. Prevalence of bla VIM, bla IMP and bla NDM Genes in Carbapenem Resistant Pseudomonas Aeruginosa Isolated from Different Clinical Infections in Diyala, Iraq. Indian Journal of Public Health Research & Development. 2020; 11: 2. https://doi.org/10.18502/ijm.v13i3.6392
Aslam, B. et al. Carbapenem resistance: Mechanisms and drivers of global menace. Pathogenic Bacteria. 2020. https://doi.org/10.5772/intechopen.90100
Al-Shamari, R. K.; Al-Khteeb, S. N. Molecular Characterization Aminoglycosids Resistance Pseudomonas aeruginosa. Iraqi Journal of Science. 2016; 1150-1157. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7304
Lambert, P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the royal society of medicine. 2002; 95( l 41) : 22.
Fadhel Abb, S.; Al-Khafaji, A. S.; Radif, H. M. Investigation of plasmid-associated fluoroquinolone resistance in nosocomial Pseudomonas aeruginosa isolated from infected burn wounds. Journal of Biological Sciences. 2018; 18 (8): 514-519. https://doi.org/10.3923/jbs.2018.514.519
Saravolatz, L. D.; Stein, G. E. Delafloxacin: A new anti–methicillin-resistant Staphylococcus aureus Fluoroquinolone. Clinical Infectious Diseases. 2019; 68 (6): 1058-1062. https://doi.org/10.1093/cid/ciy600
Ruiz, J.. Transferable mechanisms of quinolone resistance from 1998 onward. Clinical microbiology reviews 2019, 32, 4, e00007-19. https://doi.org/10.1128/CMR.00007-19
Karruli, A. et al. Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit. Antibiotics. 2022; 11(10): 1411. https://doi.org/10.3390/antibiotics11101411
Namuq, A. O.; Ali, K. O. M.; Al-An, A. H.. Correlation between biofilm formation, multi-drug resistance and AlgD gene among Pseudomonas aeruginosa clinical isolates. Journal of University of Babylon for Pure and Applied SScience. 2019; 27 (3):143-150. https://doi.org/10.21608/mid.2021.81284.1164
Mohammed, B. Q.; Abdullah, A. H. Molecular detection of some virulence genes of P. aeruginosa. 2022. https://doi.org/10.21608/svu.2019.12365.1011
El-Halim, A.; Nora, Z. Phenotypic and molecular characteristics of Pseudomonas Aeruginosa isolated from burn unit. Egyptian Journal of Medical Microbiology. 2021; 30 (1): 19-28. https://doi.org/10.51429/EJMM30103
Nassa, O.; Desouky, S. E.; El-Sherbiny, G. M.; Abu-Elghait, M. Correlation between phenotypic virulence traits and antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Microbial Pathogenesis. 2022; 162: 105339. https://doi.org/10.1016/j.micpath.2021.105339
Hasan, S. S.; Al-Niaame, A. E. Detection of some virulence factors of Pseudomonas aeruginosa isolated from wound infections and the effect of some antibiotics on them. journal of the college of basic education. 2020; 26: 108. http://dx.doi.org/10.52113/1/1/2022-15-28 15
Orole, O. O.; Gambo, S. M.; Fadayomi, V. S. Characteristics of virulence factors and prevalence of virulence markers in resistant Escherichia coli from patients with gut and urinary infections in Lafia, nigeria. Microbiology Insights. 2022; 15: 11786361221106993. https://doi.org/10.1177/11786361221106993
Gajdács, M. et al. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics. 2021;10 (9) :1134. https://doi.org/10.3390/antibiotics10091134
Fernández, L.; Breidenstein, E. B; Song, D.; Hancock, R. E. Role of intracellular proteases in the antibiotic resistance, motility, and biofilm formation of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2012; 56 (2): 1128-1132. https://doi.org/10.1128/AAC.05336-11
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms