High Frequency of Multiple Antibiotic Resistance Index of Klebsiella pneumoniae Isolated from Different Hospitals in Baghdad, Iraq
DOI:
https://doi.org/10.30526/38.3.3548Keywords:
Klebsiella pneumoniae, antibiotic resistance, MDR, VITEK, MRIAbstract
The widespread use of antibiotics has contributed to a progressive rise of Klebsiella pneumoniae resistance to antibiotics, posing a challenge in the implementation of infection control. The current study aims to give an update on the antibiotic resistance status of local K.pneumoniae isolates. A total of one hundred and sixty specimens from different sources were collected. The VITEK 2 compact system was used to confirm the identification and test the antibiotic susceptibility. Multiple antibiotic resistance indices were estimated for each isolate. Out of the total samples, eighty (50%) K. pneumoniae isolates were identified by morphological and cultural characteristics and CHROM agar. Noticeably, the majority (28.75%) of the isolates in our investigation were obtained from cases of sputum. Moreover, piperacillin was the most resistant antibiotic (91.25%), whereas colistin (10%) was the least resistant antibiotic. 66 (82.5%) isolates were indicated as multidrug-resistant K. pneumoniae, and 13.6% of isolates were flagged as ESBL producers. What’s more, 71 (53.75%) isolates had a MAR value > 0.2. K. pneumoniae developed an increased resistance to antibiotics, mostly prescribed by local physicians.
References
1. Aboud ZH, Shami AMM, Ridha BAA. Detection of blaOXA 48 and blaVIM 1 genes among carbapenem resistant Klebsiella pneumoniae isolated from urinary tract infections in Baghdad hospitals. Iraqi J Biotechnol. 2022;21(2):276–287.
2. Jaber ZK, Al Deresawi MS, Matrood AA. Detection of Ompk36 mutations of Klebsiella pneumoniae and their effect on outer membrane permeability to antibiotics. Iraqi J Biotechnol. 2022;21(2): 704-71.
3. Khalaf TT, Al Hashimy AB. Molecular identification of Klebsiella pneumoniae isolated from UTI patients in Al Anbar Governorate and study of its antibiotic resistance and antimicrobial activity of flax seed oil. Iraqi J Biotechnol. 2022;21(2): 612-622.
4. Al Hadeithi ZSM, Jasim SA, Salahdin OD. Relation between resistance of Klebsiella pneumoniae to certain antibiotics and ESBL/PBP genes. Biodiversitas. 2022;23(8):3902–3906. http://dx.doi.org/10.13057/biodiv/d230806.
5. Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG. Antimicrobial resistance: impacts, challenges, and future prospects. J Med Surg Publ Health. 2024;2:100081. http://dx.doi.org/10.1016/j.glmedi.2024.100081.
6. AbdAl Hamed ZA, Al Mayahi FSA. Antimicrobial susceptibility pattern of Klebsiella pneumoniae from various clinical and environmental samples in Diwaniyah hospitals. Al Qadisiyah J Pure Sci. 2021;26(2):44–54. http://dx.doi.org/10.29350/qjps.2021.26.2.1296.
7. Al Jelehawy AHJ, Saihood AS. Occurrence of antimicrobial resistance in Klebsiella pneumoniae isolates from clinical samples. HIV Nurs. 2022;22(2):384–386.
8. Li J, Shi Y, Song X, Yin X, Liu H. Mechanisms of antimicrobial resistance in Klebsiella: advances in detection methods and clinical implications. Infect Drug Resist. 2025;18:1339–1354. https://doi.org/10.2147/IDR.S509016
9. Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun. 2024;92(9):e00482 23. https://doi.org/10.1128/iai.00482-23
10. Vandhana V, Saralaya KV, Bhat S, Shenoy Mulki S, Bhat AK. Characterization of hypervirulent Klebsiella pneumoniae (Hv Kp): correlation of virulence with antimicrobial susceptibility. Int J Microbiol. 2022;2022:4532707. https://doi.org/10.1155/2022/4532707.
11. Duong TB, Duong MC, Campbell JI, Nguyen HV, Nguyen HH, Bui HT, Nguyen CV, Heywood A. MRSA carriage among healthcare workers in a Vietnamese intensive care unit: a prospective cohort study. Drug Target Insights. 2022;16(1):71–77. https://doi.org/10.33393/dti.2022.2504
12. Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, Alam J, Ashour HM. Extended spectrum β lactamases (ESBL): challenges and opportunities. Biomedicines. 2023;11(11):2937. https://doi.org/10.3390/biomedicines11112937
13. Al Hashimy AB, Al Musawy WK. Molecular study and antibiotic susceptibility patterns of some extended spectrum beta lactamase genes (ESBL) of Klebsiella pneumoniae in urinary tract infections. J Phys: Conf Ser. 2020; 1660(1):012017. http://dx.doi.org/10.1088/1742-6596/1660/1/012017.
14. Pfeifer E, Bonnin RA, Rocha EPC. Phage plasmids spread antibiotic resistance genes through infection and lysogenic conversion. mBio. 2022;13(5):e01851 22. https://doi.org/10.1128/mbio.01851-22
15. Lombardi F, Gaia P, Valaperta R, Cornetta M, Tejada MR, Di Girolamo L. Emergence of carbapenem resistant Klebsiella pneumoniae: progressive spread and four year period of observation in a cardiac surgery division. BioMed Res Int. 2015;2015:871947. https://doi.org/10.1155/2015/871947
16. Altayb HN, Elbadawi HS, Alzahrani FA, Baothman O, Kazmi I, Nadeem MS, Hosawi S, Chaieb K. Co occurrence of β lactam and aminoglycoside resistance determinants among clinical and environmental isolates of Klebsiella pneumoniae and Escherichia coli: a genomic approach. Pharmaceuticals (Basel). 2022;15(8):1011. https://doi.org/10.3390/ph15081011
17. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the Clinical and Laboratory Standards Institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59(12):e00213 21. https://doi.org/10.1128/JCM.00213-21
18. Osundiya OO, Oladele RO, Oduyebo OO. Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. Afr J Clin Experim Microbiol. 2013;14(3):164–168. https://doi.org/10.4314/ajcem.v14i3.6
19. Al Hamdani AH, Al Khafaji HK, Abed AS. Detection of serotype gene of Klebsiella pneumoniae isolated from different clinical cases of hospitalized infections in Al Diwaniyah city. Al Qadisiah Med J. 2016;12(1):193–203. https://doi.org/10.28922/qmj.2016.12.21.193-203.
20. Ajeel EA, Mohammed RK. Genotype and phenotype investigation of CTX M gene among multidrug resistant Klebsiella pneumoniae isolates. Iraqi J Biotechnol. 2022;21(2):1–10.
21. Ali SA, Al Dahmoshi HO. Antibiotic resistance profile of Escherichia coli and Klebsiella pneumoniae isolated from patients with cystitis. Ann Roman Soc Cell Biol. 2021;25(6):1336–1347.
22. Al Khfaji ZA, Sagban SH, Al Musawi AF. Prevalence of drug resistant strains of Escherichia coli and Klebsiella pneumoniae isolated from women with urinary tract infections in Karbala city, Iraq. Egypt J Bot. 2023;63(1):295–303. https://doi.org/10.21608/ejbo.2022.155164.2089.
23. Hamad ST, Ghaim KK, Al Lawi AA. Prevalence of carbapenemase genes in Klebsiella pneumoniae isolates from patients with urinary tract infections in Baghdad hospitals. Iraqi J Biotechnol. 2022;21(1):1–10.
24. Ramadan RA, Bedawy AM, Negm EM, Hassan TH, Ibrahim DA, Elsheikh SM, Amer RM. Carbapenem resistant Klebsiella pneumoniae among patients with ventilator associated pneumonia: evaluation of antibiotic combinations and susceptibility to new antibiotics. Infect Drug Resist. 2022;15:3537–3548. https://doi.org/10.2147/IDR.S373489.
25. Khalid MY, Ghareeb AM. Colistin resistant and biofilm formation among multidrug resistant Klebsiella pneumoniae isolated from different clinical samples. Iraqi J Biotechnol. 2022;21(2):1–10.
26. Abdulkareem M, Yassin N. Bacteriological characterization of fluoroquinolones resistant Klebsiella pneumoniae clinical isolates during COVID 19 pandemic. J Life Bio Sci Res. 2022;3(1):17–22. https://doi.org/10.38094/jlbsr30156.
27. Jalil MB, Al Atbee MYN. The prevalence of multiple drug resistant Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections. J Clin Lab Analysis. 2022;36(9):e24619. https://doi.org/10.1002/jcla.24619.
28. Abdul Jabar HH, Al Hamdani AH, Abed AS. Efficacy of combinations of piperacillin/tazobactam, ceftazidime, amikacin and bacteriophage against Enterobacteriaceae sepsis in neonates: in vitro study. System Rev Pharm. 2020;11(10):165–170. https://dx.doi.org/10.31838/srp.2020.10.28.
29. Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol. 2016;65(4):261–271. https://doi.org/10.1099/jmm.0.000241.
30. Odonkor ST, Addo KK. Prevalence of multidrug resistant Escherichia coli isolated from drinking water sources. Int J Microbiol. 2018;2018:7204013. https://doi.org/10.1155/2018/7204013.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms