Effect of Hydrothermal Temperature on the Structural, Morphological and Optical Properties of Tin Oxide Micro-Flowers

Main Article Content

Ali S. Beden
Hossain M. Moghaddam
Samaneh R. Jamnani

Abstract

In the present study, we intend to evaluate the effect of temperature on the structural, morphological, and optical properties of tin oxide. For this purpose, tin oxide micro-flowers were prepared by the hydrothermal method at two different hydrothermal temperatures of 130 and 150°C. The synthesized samples were investigated and characterized using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Ultraviolet–Visible Spectroscopy (UV-Vis). The XRD results showed that the synthesized samples have single-phase crystallinity with a rutile structure. The mean crystallite size for synthesized Micro- flowers was calculated by the Debby-Scherrer equation and the values were 21 and 28 nm for 130 and 150°C respectively. The results of FESEM showed the morphology of tin oxide is Micro-flower for both temperatures and increasing the temperature from 130 to 150°C caused the morphology of tin oxide samples to change from Micro-flowers consisting of nanoparticles to Micro-flowers consisting of nanoplates. The optical bandgap was increased, whereas the refractive index decreased by increasing temperature from 130 to 150°C.

Article Details

How to Cite
[1]
S. Beden, A. et al. 2024. Effect of Hydrothermal Temperature on the Structural, Morphological and Optical Properties of Tin Oxide Micro-Flowers. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 169–176. DOI:https://doi.org/10.30526/37.3.3562.
Section
Physics

How to Cite

[1]
S. Beden, A. et al. 2024. Effect of Hydrothermal Temperature on the Structural, Morphological and Optical Properties of Tin Oxide Micro-Flowers. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 169–176. DOI:https://doi.org/10.30526/37.3.3562.

Publication Dates

Received

2023-05-31

Accepted

2023-08-01

Published Online First

2024-07-20

References

Jasim, K.E.; Dakhel, A.A. Role of (Cu, Al) codoping in tuning the optical, structural and magnetic properties of Co-doped SnO2 nanostructures: A comparative study. Physica B: Condensed Matter 2021, 614, 413040. https://doi.org/10.1016/j.physb.2021.413040.

Mahmood, H.; Khan, M.A.; Mohuddin, B.; Iqbal, T. Solution-phase growth of tin oxide (SnO2) nanostructures: Structural, optical and photocatalytic properties. Materials Science and Engineering: B 2020, 258, 114568. https://doi.org/10.1016/j.mseb.2020.114568.

Matysiak, W.; Tański, T.; Smok, W.; Polishchuk, O.; Synthesis of hybrid amorphous /crystalline SnO2 1D nanostructures: investigation of morphology, structure and optical properties. Scientific Reports 2020, 10, 1, 14802. https://doi.org/10.1038/s41598-020-71383-2.

Khan, D.; Rehman, A.; Rafiq, M.Z.; Khan, A.M.; Ali, M. Improving the optical properties of SnO2 nanoparticles through Ni doping by sol-gel technique. Current Research in Green and Sustainable Chemistry. 2021, 4, 100079. https://doi.org/10.1016/j.arabjc.2017.05.011.

Kundu, N.; Jaggi, N.; Synthesis of SnO2 nano-sheets by hydrothermal route. In AIP Conference Proceedings 2020, 1, 020049. https://doi.org/10.1063/5.0001708.

Kumar, V.; Singh, K.; Kumar, A.; Kumar, M.; Singh, K.; Vij, A.; Thakur, A. Effect of solvent on crystallographic, morphological and optical properties of SnO2 nanoparticles. Materials Research Bulletin. 2017, 85, 202-208. https://doi.org/10.4103/0974-620x.116624.

Kumar, A.; Chitkara, M.; Dhillon, G. Effect of varying calcination temperature on the structural and optical properties of tin oxide nanoparticles. Materials Today: Proceedings. 2023. 23, 12-23. https://doi.org/10.1016/j.matpr.2023.05.207.

Selvakumari, J.C.; Ahila, M.; Malligavathy, M.; Padiyan, D.P. Structural, morphological, and optical properties of tin (IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach. International Journal of Minerals, Metallurgy, and Materials 2017, 24, 1043-1051. https://doi.org/10.1007/s12613-017-1494-2.

Sirohi, K.; Kumar, S.; Singh, V.; Chauhan, N.; Hydrothermal synthesis of Cd-doped SnO2 nanostructures and their structural, morphological and optical properties. Materials Today: Proceedings 2020, 21, 1991-1998. https://doi.org/10.1016/j.matpr.2020.01.316.

Van Tuan, P.; Hieu, L.T.; Nga, L.Q.; Ha, N.N.; Dung, N.D.; Khiem, T.N.; Influence of Hydrothermal Temperature on the Optical Properties of Er-Doped SnO2 Nanoparticles. Journal of Electronic Materials 2017, 46, 3341-3344. https://doi.org/10.1111/j.1365-3156.2006.01562.x.

Pazouki, S.; Memarian, N.; Effects of Hydrothermal temperature on the physical properties and anomalous band gap behavior of ultrafine SnO2 nanoparticles. Optik. 2021, 246, 167843. https://doi.org/10.1016/j.ijleo.2021.167843

Ziegler, J.F.; Biersack, J.P.; Littmark, U. the stopping and range of ions in solids. Pergamon Press, New York. 1985. 12(32), 44-56. https://doi.org/10.1007/978-3-642-68779-2_5.

Trim, V.; Ziegler, J.F.; Biersack, J P. Updated version of a computer code for calculating stopping and Ranges, described in reference, Appl. Physics.2003. 12(4), 45-56. https://doi.org/10.1016/ J.NIMB.2010.02.091.

Bowler, M. Nuclear physics. Pergamon Press Ltd. Oxford 1973, 232.

Pupillo, G.; Sounalet, T.; Michel, N.; Mou, L.; Esposito, J.; Haddad, F. New production cross sections for the theranostic radionuclide 67Cu. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2018, 415, 41. 23-44.

Szelecsenyi, F.; Steyn, G.F.; Methods in Physics Res., Sect. B. Journal Nuclear. Instrument 2005, 234, 4, 12-34.

Szelecsenyi, F.; Kovacs, Z. Investigation of direct production of 68Ga with low energy multiparticle accelerator. Journal Radio-chemica Acta, Germany. 2012, 100, 5, 34-45. https://doi.org/10.1524 /ract .2011.1896

Stoll, T.; Kastleiner, S. Excitation functions of proton-induced reactions on 68-Zn from threshold up to 71 MeV, with specific reference to the production of 67-Cu. Journal Radio-chemical Acta, Germany 2002, l9 (309), 33-45. https://doi.org/10.1524/ract.2002.90.6.309.

Szelecsenyi, F.; Boothe, T.E.; Takacs, S. Evaluation of direct production of Ga with high energy multiparticle. Journal Applied Radiation and Isotopes, 1998, 49, 1005, 45-65. https://doi.org/ 10.1016/S0969-8043%2897%2910103-8.

Hermanne, A. Evaluated cross-section and thick target yield databases of Zn+p processes for practical applications. Journal Applied Radiation and Isotopes 1997, 49(1005), 23-33. https://doi.org /10.1016/S0969-8043(97)10103-8.

Norton, K.J.; Firoz, A.; David, J.L.; A review of the synthesis, properties, and applications of bulk and two-dimensional tin (II) sulfide (SnS). Applied Sciences 2021, 11, 5, 2062. https://doi.org /10.3390/app11052062.

Yu, J.; Yingeng, W.; Yan, H.; Xiuwen, W.; Jing, G.; Jingkai, Y.; Hongli, Z. Structural and electronic properties of SnO2 doped with non-metal elements. Beilstein Journal of Nanotechnology 2020, 11(1), 1321-1328. https://doi.org/10.3762/bjnano.11.116.

Pargoletti, E.; Umme, H.H.; Iolanda, D.B.; Hongjun, C.; Thanh, T.P.; Gian, L.; Chiarello, J.; Lipton, D.; Valentina, P.; Antonio, T.; Giuseppe, C. Engineering of SnO2–graphene oxide nano heterojunctions for selective room-temperature chemical sensing and optoelectronic devices. ACS Applied Materials & interfaces 2020, 12(35), 39549-39560. https://doi.org/10.1021/acsami.0c09178.

Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S.; Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. The Journal of Physical Chemistry C. 2008, 112(17), 6643-6647. https://doi.org/10.1021/jp8003147.

Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors." Progress in Materials Science 2014, 66, 112-255. https://doi.org/10.1016/j.pmatsci. 2014.06.003.

Castro, A.; Marques, M.A.; Rubio, A. Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics 2004, 121(8), 3425-33. https://doi.org/10. 1063/1.1774980.

Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M.E.; Burke, K.; Müller. K.R. Bypassing the Kohn-Sham equations with machine learning. Nature Communications 2017, 8(1), 872. https://doi.org/10.1038/s41467-017-00839-3.

Sahoo, L.; Bhuyan, S.; Das, S.N. Structural, morphological, and impedance spectroscopy of Tin oxide-Titania based electronic material. Physica B: Condensed Matter 2023, 654, 414705. https://doi.org/10.1016/j.physb.2023.414705.

Tui, R.; Sui, H.; Mao, J.; Sun, X.; Chen, H.; Duan, Y.; Yang, P.; Tang, Q.; He, B. Round-comb Fe2O3& SnO2 heterostructures enable efficient light harvesting and charge extraction for high-performance all-inorganic perovskite solar cells. Journal of Colloid and Interface Science 2023, 15(640), 18-27. https://doi.org/10.1016/j.jcis.2023.03.034.

Du, B.; Kun, He.; Gangqi, T.; Xiang, C.; Lin, S. Robust Electron Transport Layer of SnO2 for Efficient Perovskite Solar Cells: Recent Advances and Perspectives. Journal of Materials Chemistry C. 2023, 12, 3, http://dx.doi.org/10.1016/j.optmat.2023.113518.