Calculation of the Photons Emission Rate by Interaction of Charm Quark with Gluon
Main Article Content
Abstract
In this paper, a theoretical model has been presented to calculate the rate of photon emission. The photonic yield has been calculated for the interaction of heavy charm quarks with gluon from Bremsstrahlung processes. The rate of photon emission was evaluated for the interaction of the charm quarks with the gluons
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Accepted
Published Online First
References
Heilbron, J.L. The History Of Physics A Very Short Introduction. Oxford University Press. 2018, 12(3), 34-45.
Khana, M.P. Introduction to particle physics. Book 5^thed, PHI Learning Private Limited. 2013, 22(12), 23-34.
Alattabi, H.D.; Shafik, S.S.; Kadhim, M.A. Secondary Emission Effect on Some Pre-Equilibrium Nuclear Reactions Spectra at Different Energies. Iraqi Journal of Science Special Issue. 2019, 45(4), 12-24. https://doi.org/10.1088/1742-6596%2F1178%2F1%2F012005.
Tarek, F. Introduction to history of elementary particles and their dynamics. Oxford University Press. 2019, 23(2), 45-56.
Das, A.; Ferbel, T. Introduction to Nuclear and Particle Physics. University of Rochester. 2005, 23(12), 45-67.
Shwiekh, A.M.; Hussein, S.M.; Al-Agealy, H.J.M.; Hassooni, M.A. Flow Production Rate of Hard Photons Probes of Quark- Anti Quark Annihilation Processes at Plasma Phase. IOP Conf. Series: Materials Science and Engineering. 2020, 871, 012089. https://doi.org/10.1088/1757-899X% 2F871%2F1%2F012089.
Ahmed, E.M.; Al-Agealy, H.J.M.; Kadhim, N.F. Theoretical Calculation of Photon Emission from Quark-Antiquark Annihilation Using QCD Theory. Ibn AL-Haitham Journal for Pure and Applied. Scieence. 2022, 35 (4), 46-65. https://doi.org/10.30526/35.4.2879.
Ridha, O.Z.; Shwiekh, A.M. Calculation of the Rate of Photons Emission from Charm-Gluon Interaction. Journal of Kufa Physics. 2023, 15(1), 66-76. http://dx.doi.org/10.31257/2018 /JKP/2023/v15.i01.11516.
Streeter, J.; Lull, D.J. God and the History of The Universe. Wipf and Stock Puplishers. 2016. 233.
Al-Agealy, H.J.; Hussein, H.H.; Hussein, S.M. Theoretical estimation of Photons flow rate Production in quark-gluon interaction at high energies. Journal of Physics: Conference Series. IOP Publishing. 2018, 1003, 1, 012119. https://doi.org/10.1088/1742-6596%2F1003%2F1% 2F012119.
Mann, R. An Introduction to Particle Physics and The Standard Model. Book 1st.CRC Press. 2009, 12(3), 34-45. https://doi.org/10.1201/9781420083002.
Feynman, R.P. Photon-hadron Interactions (Frontiers in physics). USA:W.A. Benjamin. 1972, 233. https://doi.org/10.1201/9780429493331.
Bali, G.S.; Schilling, K. Static Quark-Antiquark Potential: Scaling Behavior and Finite-Size Effects in SU(3) Lattice Gauge Theory. Physical Review. 1992, 46(6), 2636. https://doi.org /10.1103/PHYSREVD.46.2636.
Bengt, F.; Ho ̈hne, C.; Knoll, J.; Leupold, S.; Randrup, J.; Rapp, R.; Senger, P. The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments. Springer. 2011, 12(3), 65-77.
Hauksson, S. Photon Emission in a N0n-Equilibrium Quark-Gluon Plasma. Msc thesis. McGill University. 2017, 3(23), 12-34. https://doi.org/10.1016/j.nuclphysa.2018.09.066.
Al-Agealy, H.J.; Ghadhban, R.Q.; Hassooni, M.A.; Theoretical Study of the Photons Production Kinetic In Hot Quark-Gluon Plasma Matter. Ibn AL-Haitham Journal for Pure and Applied. Scieence. 2020, 33(4), 45-56. https://doi.org/10.23851/mjs.v33i4.1193.
Hussein, S.M.; Al-Agealy, H.J.; Al-Rubaiee, A.A.; Theoretical Analysis of The Photon Production Rate in The Quark-Gluon Interaction According to The Quantum Chromodynamic QCD Theory. Ibn AL-Haitham Jour. Pure Appl. Sci. 2023, 36(3), 66-76. https://doi.org/10. 1088/1742-6596%2F1003%2F1%2F012119.
Aurenche, P.; Gelis, F.; Kobes, R.; Zaraket, H. Bremsstrahlung and Photon Production in Thermal QCD. Physical Review D. 1998, 58, 085003. https://doi.org/10.1103/PhysRevD.58.085003.
Peskin, M.E. Introduction To Quantum Field Theory. Perseus Books Publishing L.L.C. 1995, 231. https://doi.org/10.1201/9780429503559.
Sastry, D.D.; Kumar, K.; Choudhury, R. K. Nuclear Physics. Appl. Phys. 2000, 710(15), 3-14. https://doi.org/10.1016/j.cmpb.2022.107156.
Long, J.L.; He, Z.J.; Ma, Y.G.; Liu, B. Hard Photon Production from a Chemically Equilibrating Quark-Gluon Plasma with Finite Baryon Density at One Loop and Two Loop. Physical Review C. 2005, 72, 64907.
Ahmed, E.M.; Al-Agealy, H.J.; Kadhim, N.F. Study of Photons Emission Rate of Quark-Antiquark at Higher Energy. Al-Mustansiriyah Journal of Science. 2022, 33(4), 2521-3520. https: //doi.org/10.23851/mjs.v33i4.1193.
Noel, C.W.; Greenwood, D.A. An introduction to the standard model of particle physics. Cambridge University Press. 2007, 23(4), 56-67. https://doi.org/10.1017/9781009401685.
Biro, T.S. Parton Equilibration in Relativistic Heavy Ion Collisions. Physical Review C. 1993, 48, 1275. https://doi.org/10.1103/PhysRevC.48.1275.
Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Non-Abelian Gauge Theories. Physical Review Letters. 1973, 30(26), 1343. https://doi.org/10.1103/PHYSREVLETT.30.1343.
Al-Agealy, H.J.; Sahib, M.J. Theoretical Evaluations of Probability of Photons Yield Depending on Quantum Chromodynamics Theory. Ibn AL-Haitham Journal for Pure and Applied. Scieence. Special Issue 2017, 179-186. http://dx.doi.org/10.30526/2017.IHSCICONF.1790.
Jacobs, P.; Wang, X.N. Matter in Extremis: ultrarelativistic nuclear collisions at RHIC. Progress in Particle and Nuclear Physics. 2005, 54(2), 443-534. https://doi.org/10.1016/j.ppnp.2004.09.001.
Younis, T.A.; Al-Agealy, H.J. Study and Investigation of Hard Photons Emission in Heavy Ion Collisions. NeuroQuantology. 2021, 19(2), 45-56. https://doi.org/10.14704/NQ.2021.19.2. NQ21018.
Bkmurd, R.I.; Al-Agealy, H.J.; Shwiekh, A.M. Study and Evaluation the Photonic Emission Rate at Quark Gluon plasma From Compton and Bremsstrahlung Process Solid State Technology. Solid State Technology. 2020, 63(6), 156569-16579.
Ahmed, E.M.; Al-Agealy, H.J.; Kadhim, N.F. Theoretical Study of Photons Spectra around High Energy of Quark-antiquark Using QCD Theory. NeuroQuantology. 2022, 20(4), 58-63. http://dx. doi.org/10.14704/nq.2022.20.4.NQ22095.