The Local Bifurcation of Food web Prey-Predator Model involving fear and anti-Predator behavior

Authors

DOI:

https://doi.org/10.30526/38.1.3598

Keywords:

Prey-Predator, Local Bifurcation, Global Bifurcation, Sotomayor's theorem

Abstract

     In this paper, the conditions under which the occurrence of the local bifurcation (such as saddle-node (SN), transcritical (TC), and pitchfork (PT)) of all stable points of a food web model have been investigated. Fear and anti-predator responses involving the Holling-type IV and Growly-Martin functional responses have been found. It has been shown that there are transcritical and pitchfork bifurcations near  H3, H4, and H as well as a saddle-node bifurcation close to the positive equilibrium point. In addition, there is a saddle-node bifurcation in close to the positive equilibrium point. These divergences have materialised into existence. In conclusion, To prove that the analytical results are correct, a numerical simulation of a set of parameters and starting conditions has been used.

Author Biographies

  • Hanna Rasool Hadi, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

    .

  • Azhar Abbas Majeed, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

    .

References

1. Majeed AA, Ali NH. The bifurcation of stage-structured prey-predator food chain model with refuge. Int J Mod Res Eng Technol. 2016.

2. Madhi ZS, Hussain MAA. Bifurcation diagram of W(U_j; τ)-function with (p, q)-parameters. Iraqi J Sci. 2022;667-674. https://doi.org/10.24996/ijs.2022.63.2.23

3. Huang M, Ji H, Sun J, Wei L, Zha X. Bifurcation-based stability analysis of photovoltaic-battery hybrid power system. IEEE J Emerg Sel Top Power Electron. 2017;5:1055-1067. https://doi.org/10.1109/JESTPE.2017.2681125

4. Shuai Z, Peng Y, Liu X, Li Z, Guerrero JM, Shen ZJ. Parameter stability region analysis of islanded microgrid based on bifurcation theory. IEEE Trans Smart Grid. 2019;10:6580-6591. https://doi.org/10.1109/TSG.2019.2907600

5. Othman KB, Amen AI. Periodic solutions of the forest pest system via Hopf bifurcation and averaging theory. Iraqi J Sci. 2022;5496-5509. https://doi.org/10.24996/ijs.2022.63.12.35

6. Jalal AA, Amen AI, Sulaiman NA. Darboux integrability of a generalized 3D chaotic Sprott ET9 system. Baghdad Sci J. 2022;19:542. http://dx.doi.org/10.21123/bsj.2022.19.3.0542

7. Xu C, Liao M. Bifurcation behaviours in a delayed three-species food-chain model with Holling type-II functional response. Appl Anal. 2013;92:2468-2486. https://doi.org/10.1080/00036811.2012.742187

8. Majeed NS. Local bifurcation analysis for a special type of SIR epidemic model. Int J Sci Res IJSR. 2017;6:1143-1146. https://doi.org/10.21275/ART2017872

9. Majeed SN. Dynamical study of an SIR epidemic model with nonlinear incidence rate and regress of treatment. Ibn AL-Haitham J Pure Appl Sci. 2018;510-522. https://doi.org/10.30526/2017.IHSCICONF.1810

10. Xia Y, Huang X, Chen F, Chen L. Stability and bifurcation of a predator-prey system with multiple anti-predator behaviors. J Biol Syst. 2024;32(2):889-919. https://doi.org/10.1142/S021833902450030X

11. Prasad KD, Sasmal SK. Dynamics of anti-predator behavior and effect of fear on prey-predator model. J Biol Syst. 2022;30(4):887-912. https://doi.org/10.1142/S0218339022500322

12. Harianto J, Suparwati T, Dewi ALP. Local stability dynamics of equilibrium points in predator-prey models with anti-predator behavior. J Ilmu Dasar. 2021;22(2):153-160. https://doi.org/10.19184/jid.v22i2.23991

13. Naji RK, Majeed SJ. The dynamical analysis of a prey-predator model with a refuge-stage structure prey population. Int J Differ Equ. 2016;2010464. https://doi.org/10.1155/2016/2010464

14. Naik PA, Eskandari Z, Shahkari HE, Owolabi KM. Bifurcation analysis of a discrete-time prey-predator model. Bull Biomathematics. 2023;1(2):111-123. https://doi.org/10.59292/bulletinbiomath.2023006

15. Akhtar S, Ahmed R, Batool M, Shah NA, Chung JD. Stability, bifurcation and chaos control of a discretized Leslie prey-predator model. Chaos Solitons Fractals. 2023;152:111345. https://doi.org/10.1016/j.chaos.2021.111345

16. Mezouaghi A, Djilali S, Bentout S, Biroud K. Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting. Math Methods Appl Sci. 2022;45(2):718-731. https://doi.org/10.1002/mma.7807

17. Din Q. Stability, bifurcation analysis and chaos control for a predator-prey system. J Vib Control. 2019;25(3):612-626. https://doi.org/10.1177/1077546318790871

18. Tang B, Xiao Y. Bifurcation analysis of a predator-prey model with anti-predator behaviour. Chaos Solitons Fractals. 2015;70:58-68. https://doi.org/10.1016/j.chaos.2014.11.008

19. Orrell D, Smith LA. Visualizing bifurcations in high dimensional systems: The spectral bifurcation diagram. Int J Bifurc Chaos. 2003;13:3015-3027.

20. Zhao Y, Zhao L, Huang C. Stability and bifurcation analysis of a fractional predator-prey model involving two nonidentical delays. Math Comput Simul. 2021;181:562-580. https://doi.org/10.1016/j.matcom.2020.10.013

21. Majeed AA, Ismaeeb MH. The bifurcation analysis of prey-predator model in the presence of stage structured with harvesting and toxicity. J Phys Conf Ser. 2019;1362:012155. https://doi.org/10.1088/1742-6596/1362/1/012155

22. Hadi HR, Majeed AA. The fear and anti-predator behavior effect on the dynamics of an ecological model with Holling-type IV and Crowley-Martin-type of functional responses. Am Inst Phys Conf Ser. 2024;3097(1):080032. https://doi.org/10.1063/5.0209445

Downloads

Published

20-Jan-2025

Issue

Section

Mathematics

How to Cite

[1]
Rasool Hadi, H. and Abbas Majeed, A. 2025. The Local Bifurcation of Food web Prey-Predator Model involving fear and anti-Predator behavior. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 1 (Jan. 2025), 428–444. DOI:https://doi.org/10.30526/38.1.3598.