Measuring the Amount of Melatonin in Twelve Medicinal and Edible Plants

Authors

DOI:

https://doi.org/10.30526/38.2.3600

Keywords:

Melatonin, HPLC, TLC

Abstract

     Melatonin (Mel) is a conserved chemical that has been found in far-removed evolutionary organisms. Additionally, it has been proposed that Mel is a stand-alone plant growth regulator whose action is presumably similar to that of IAA and may moderate the effects of other plant growth regulators. Twelve medicinal herbs were divided into parts, and their melatonin concentrations were measured. These plants Ziziphus spina-christi, , Eucalyptus comaldulensis, Melissa officinalis,  Alhagi maurorum, Lavandula angustifolia, Vitex agnus-sactus, Piper nigrum, Hordeum vulgare, Matricaria chamomilla, Borago  officinalis, Solanum lycopersicum and Citrus aurantium  . Methanol was used to extract melatonin from dried plant parts at room temperature for 6 hours. Then, cyclo (18) carbon was used to refine melatonin. Then, melatonin was analyzed with an reversed-phase chromatography )RP-C18(-approved high-performance liquid chromatography system "HPLC "technique with fluorescence detection and Thin layer chromatography "TLC". Melatonin contents in extracts of  Z.spina-christi, E. comaldulensis, M. officinalis, A. maurorum, L. angustifolia,V. agnus-sactus, P. nigrum, H. vulgare, M. chamomilla, B. officinalis, S. lycopersicum and C. aurantium  were 420.494, 418.831, 409.750, 408.248, 385.145,239.967, 232.299, 220.569,215.804, 201.862, 108.517 and  106.744  ng/g of plant dry weight, respectively. The extract of Z. spina-christi contained the most melatonin (420.494 ng/g of plant dry weight). Not only do Mel concentrations vary between species, but also within variants of the same species. Different environmental influences on plant growth and development during successive stages of seed morphological and physiological development may cause variations in MEL contents.

Author Biographies

  • Hanan H. ALQaragholy, Department of Science, College of Basic Education, Wasit University, Kut, Iraq.

    Department of Science, College of Basic Education, Wasit University, Kut, Iraq.

  • Ayyad W. ALShahwany, Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq.

    Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq.

References

1. Que Z, Ma T, Shang Y, Ge Q, Zhang Q, Xu P. Microorganisms: Producers of Melatonin in Fermented Foods and Beverages. J Agric Food Chem. 2020;68(17):4799-811. https://doi.org/10.1021/acs.jafc.0c01200.

2. Murch SJ, Saxena PK. Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant. 2002;38:531–6. https://doi.org/10.1079/IVP2002333.

3. Arnao MB, Hernández-Ruiz J. Melatonin as a plant biostimulant in crops and during post-harvest: a new approach is needed. J Sci Food Agric. 2021;101(13):5297-304. https://doi.org/10.1002/jsfa.11318.

4. Yu R, Zuo T, Diao P, Fu J, Fan Y, Wang Y. Melatonin Enhances Seed Germination and Seedling Growth of Medicago sativa Under Salinity via a Putative Melatonin Receptor MsPMTR1. Front Plant Sci. 2021;12:702875. https://doi.org/10.3389/fpls.2021.702875.

5. Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. Medicines (Basel). 2018;5(4):121. https://doi.org/10.3390/medicines5040121.

6. Mannino G, Caradonna F, Cruciata I, Lauria A, Perrone A, Gentile C. Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin-1β. J Pineal Res. 2019;67:e12598. https://doi.org/10.1111/jpi.12598.

7. Omer RA, Koparir P, Ahmed L, Koparir M. Computational and spectroscopy study of melatonin. Indian J Chem B. 2021;60:732–41.

8. Tan D, Reiter R, Manchester L, Yan M, El-Sawi M, Sainz R. Chemical and Physical Properties and Potential Mechanisms: Melatonin as a Broad Spectrum Antioxidant and Free Radical Scavenger. Curr Top Med Chem. 2005;2:181–97. https://doi.org/10.2174/1568026023394443.

9. Simopoulos AP, Tan DX, Manchester LC, Reiter RJ. Purslane: A plant source of omega-3 fatty acids and melatonin. J Pineal Res. 2005;39:331–2. https://doi.org/10.1111/j.1600-079X.2005.00259.x.

10. Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res. 2018;65:e12526. https://doi.org/10.1111/jpi.12526.

11. Yu Y, Bian L, Jiao Z, Yu K, Wan Y, Zhang G. Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genomics. 2019;20:880. https://doi.org/10.1186/s12864-019-6285-2.

12. Wang X, Zhang H, Xie Q, Liu Y, Lv H, Bai R. SlSNAT Interacts with HSP40, a Molecular Chaperone, to Regulate Melatonin Biosynthesis and Promote Thermotolerance in Tomato. Plant Cell Physiol. 2020;61:909–21. https://doi.org/10.1093/pcp/pcaa037.

13. Wang L, Feng C, Zheng X, Guo Y, Zhou F, Shan D. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res. 2017;63:e12429. https://doi.org/10.1111/jpi.12429.

14. Vigliante I, Mannino G, Maffei ME. Chemical Characterization and DNA Fingerprinting of Griffonia simplicifolia Baill. Molecules. 2019;24:1032. https://doi.org/10.3390/molecules24061032.

15. Mannino G, Gentile C, Ertani A, Serio G, Bertea CM. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture. 2021;11:212. https://doi.org/10.3390/agriculture11030212.

16. Arnao MB. Phytomelatonin: Discovery, Content, and Role in Plants. Adv Bot. 2014;2014:815769. https://doi.org/10.1155/2014/815769.

17. Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: Comparisons across species. J Pineal Res. 2016;61:27–40. https://doi.org/10.1111/jpi.12373.

18. Debnath S, Biswas D, Ray K, Guha D. Moringa oleifera induced potentiation of serotonin release by 5-HT(3) receptors in experimental ulcer model. Phytomedicine. 2011;18:91–5. https://doi.org/10.1016/j.phymed.2010.05.008.

19. Ansari M, Rafiee Kh, Yasa N, Vardasbi S, Naimi SM, Nowrouzi A. Measurement of melatonin in alcoholic and hot water extracts of Tanacetum parthenium, Tripleurospermum disciforme and Viola odorata. Iran J Pharm Res. 2010;18(3):173-8. https://pmc.ncbi.nlm.nih.gov/articles/PMC3304366/,

20. Muszyńska B, Maślanka A, Sułkowska-Ziaja K, Krzek J. Analysis of indole compounds and nitric bases in fruiting bodies of Lactarius deterrimus by TLC. J Planar Chromatogr. 2007;20:55–8. https://doi.org/10.1556/JPC.20.2007.1.10.

21. Muszyńska B, Maślanka A, Sułkowska-Ziaja K, Ekiert H. Analysis of indole compounds in Armillaria mellea fruiting bodies. Acta Pol Pharm. 2011;68:93–7. https://pubmed.ncbi.nlm.nih.gov/21485706/.

22. Hasan HR, Zainulabdeen JA. Screening, Extraction, and Quantification of Melatonin in Waste of Some Plants. Iraqi J Sci. 2022;63(5):1874-84. https://doi.org/10.24996/ijs.2022.63.5.18.

23. Back K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021;105:376-91. https://doi.org/10.1111/tpj.15069.

24. Tzanova M, Atanasov V, Yaneva Z, Ivanova D, Dinev T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes. 2020;8(10):1222. https://doi.org/10.3390/pr8101222.

25. Costa VM, Grando LGR, Milandri E, Nardi J, Teixeira P, Mladěnka P. Natural sympathomimetic drugs: from pharmacology to toxicology. Biomolecules. 2022;12(12):1793. https://doi.org/10.3390/biom12121793.

26. Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J. Insights on the extraction and analysis of phenolic compounds from citrus fruits: green perspectives and current status. Crit Rev Anal Chem. 2024;54(5):1173-1199. https://doi.org/10.1080/10408347.2022.2107871.

27. Ishihara A, Courville AB, Chen KY. The Complex Effects of Light on Metabolism in Humans. 2023;15(6):1391. https://doi.org/10.3390/nu15061391.

Downloads

Published

20-Apr-2025

Issue

Section

Biology

How to Cite

[1]
ALQaragholy, H.H. and Ayyad W. ALShahwany 2025. Measuring the Amount of Melatonin in Twelve Medicinal and Edible Plants. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 31–41. DOI:https://doi.org/10.30526/38.2.3600.