Enhanced Electromagnetic Interference Shielding Effectiveness of Lightweight Polymethyl Methacrylate /Graphene/Silver Hybrid to Reduced Pollution and Healthcare
Main Article Content
Abstract
The growth of using electronic devices has led to the development of a new pollution type that has been referred to as noise, radio frequency interference, or electromagnetic radiation (EM). The identification of lightweight PMMA/Gr/Ag nanocomposites has led to the discovery of a new hybrid polymer composite. Electrical conductivity, High Electromagnetic (EM) Shielding Effectiveness (SE) in a frequency range of 8.20-12.40GHz (x-band), dielectric characteristics, and differential thermal analysis were used to examine PMMA/Gr/Ag. Using the solvent casting process, a hybrid PMMA/Gr/Ag nanocomposite was created. The hybrid composite's electrical conductivity demonstrates that D.C conductivity is around 1.6×10-6 S/ cm as concentration is attained at 0.5% for Ag and 0.5% for Graphene, and that σac (ω) is frequency increases with increases in frequency. All PMMA/Gr/Ag nanocomposites exhibit decreasing dielectric properties (ɛ´, ɛ´´, tan δ) with increasing frequency. It was discovered that SE is highly dependent on Graphene and Ag, with the maximum SE attenuation recorded at 0.5wt% of Graphene and Ag being 11 dB at 12 GHz. Test of DTA shows that exothermic reactions with the dominating weight take place at (200–300)°C. PMMA matrix of PMMA/Gr/Ag nanocomposites displayed unique dispersion of the silver & graphene particles, according to FESEM results.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Accepted
Published Online First
References
Faiza, S.; Munir, A.; Kashif, I. Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications. Journal of Industrial Textile 2022, 51(5) ,7293–7358. https://doi:10.1002/app.44757.10.1002
Ahmed, N.; Abdulwahhabb, H.A.; Mustafa, A.A. Addition of Some Primary and Secondary Amines to Graphene Oxide and Studying Their Effect on Increasing its Electrical Properties. Baghdad Science Journal 2016, 13(1), 23-45. https://doi:10.1002/erp.43457.10.1342
Mustafa, A. H.; Ola, A. I.; Determine the Radon Gas Level Using the GIS Technique for Baghdad City” Iraqi Journal of Science 2018, 59(1A), 218-226. https://doi:10.1002/ app .44757 .10.1002
Aya, H.M.; Asama, N.; Naje, R.; Ibrahim, K. Photoconductive Detector Based on Graphene Doping with Silver Nanoparticles. Iraqi Journal of Science 2022, 63(12), 5218-5231. https://doi:10.1002/rtp.43457.10.1442
Muthafar, F.; Jamil, A. Structural and dielectric properties of Zr doped BaTiO3synthesizedby microwave-assisted chemical route. Iraqi Journal of Science 2018, 59(1), 96-104. https://doi:10.1002/esd.43457.10.1376
Nadia, A.; Ali, A.; Abd-Elnaiem, S.; Hussein, A.; Khalil, H.; Alamri, R.; Hasan, S.A. Thermal and Mechanical Properties of Epoxy Resin Functionalized Copper and Graphene Hybrids using In-situ Polymerization Method. Current Nanoscience 2021, 17(3), 23-35.
Tabarak, M.A.; Seenaa, I.H. Improving the Mechanical Properties, Roughness, Thermal Stability, and Contact Angle of the Acrylic Polymer by Graphene and Carbon Fiber Doping for Waterproof Coatings. Journal of Inorganic and Organometallic Polymers and Materials 2022, 32, 3788–3796. https://doi:10.1002/ewe.43457.10.1345
Asmaa, N.; Mohammed, A.; Ali, N.A.; Hussein, S.I.; Alofi, A.S.; Abd Elnaiem, A.M. Nano architectonics of Silver/Poly (Methyl Methacrylate) Films: Structure, Optical Characteristics, Antibacterial Activity, and Wettability. Journal of Inorganic and Organometallic Polymers and Materials 2023, 33, 694–706. https://doi:10.1002/ehy.43457.10.1399
Perna, R.; Modak, D.N.; Subhash, K. Electromagnetic Interference Shielding Effectiveness of Graphene-Based Conducting Polymer Nanocomposites. Springer Proceedings in Physics 2020, 242(8), 34-55. https://doi:10.1002/mkd.43457.10.1343
Bin, S.; Yang, Li.; Wentao, Z.; Wen-Ge, Z. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. J. ACS applied materials and interfaces 2016, 8, 8050-8057. https://doi:10.1002/etr.43457.10.1321
Wei-Li, S.; Mao-Sheng, C.; Ming-Ming, L.; Song, B.; Chan-Yuan, W.; Jia, L.; Jie, Y.; Li-Zhen, F.; Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. J. Carbon. 2014, 66, 67-76. https://doi:10.1002/ehy. 43457.10.1332
Limin, M.; Zhengang, L.; Jiubin, T.; Jian, L.; Xuemei, D.; Nicola, B.; Tianyi, L.; John, G.; Ling, H. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphen, J. ACS materials and interfaces 2017, 9(39), 34221-34229. https://doi:10.1002/enh.43457.10.1355
Liam, A.; Premika, G.; Andrew, A.; Azadeh, M.; Nishar, H. Modelling, fabrication and characterization of graphene/polymer nanocomposites for electromagnetic interference shielding applications. Journal Carbon Trends 2021, 4, 12-34. https://doi:10.1002/evg.43457.10.1387
Aseel, A.K.; Hussein, K.R.; Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films. Materials Science- Poland 2019, 37(4), 34-44. https://doi:10.1002/esd.43457.10.1376
Al-Lamy, H.K.; Nasir, E.M.; Abdul-Ameer, H.J. Electrical properties of Cdxse1-x films at different thickness and annealing temperatures. Digest Journal of Nanomaterials and Biostructures 2020, 15(1), 143–156. https://doi:10.1002/jud.43457.10.1390
Dash, K.; Hota, N.K.; Sahoo, B.P. Fabrication of thermoplastic polyurethane and polyaniline conductive blend with improved mechanical, thermal and excellent dielectric properties: Exploring the effect of ultralow-level loading of SWCNT and temperature. J. Mater. Sci. 2020, 55, 12568–12591. https://doi:10.1002/ety.43457.10.1322
Fan, P.; Wang, L.; Yang, J.; Chen, F.; Zhong, M. Graphene/poly (vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 2012, 23, 365702.
Farzaneh, F.; Pei, L.; Yap, R.; Udayashankar, K.;G. Gedler, M.; Antunes, J.I.; Velasco, R.O. Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Journal Materials and Design 2016, 90, 906-914. https://doi:10.1002/enj.43457.10.1311
Habib, A.; Pierre, M.; Matias, R.; Hai, Z.; Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case. Archive for Rational Mechanics and Analysis 2017, 224(2), 597–658.
Kadimi, A.; Benhamou, K.; Ounaies, Z.; Magnin, A.; Dufresne, A.; Kaddami, H.; Raihane, M. Electric Field Alignment of Nanofibrillated Cellulose (NFC) in Silicone Oil: Impact on Electrical Properties. ACS Appl. Mater. Interfaces, 2014, 6, 9418–9425. https://doi:10.1002/elo. 43457.10.1332
Kareem, A.A.; Rasheed, H.K.; Nasir, E.M.; Influence methods of preparation on the thermal stability of polyimide/silica dust. Polymer Bulletinthis link is disabled 2022, 79(8), 6617–6626.
Liu, W.; Lee, S.W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A.D.; Cui, Y.; Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy, 2017, 2, 17035. https://doi:10.1002/hyd.43457.10.1354
Quan, W.; Junbo, C.; Weifei, W.; Zhendong, H.; Xueqing, L.; Tianli, R.; Yuwei, C.; Jianming, Z. Contributing Factors of Dielectric Properties for Polymer Matrix Composites. Polymers, 2023, 15(590). 23-45. https://doi:10.1002/bhg.43457.10.1344
Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. https://doi:10.1002/uyd.43457.10.1309
Xinyang, L.; Guilong, W.; Chunxia, Y.; Jinchuan, Z.; Aimin, Z. Mechanical and EMI shielding properties of solid and microcellular TPU/ nano graphite composite membranes. Polymer Testing, 2021, 93, 106891. https://doi:10.1002/hyg.43457.10.1765
Israa, M.R.; Yousif, I.M.; Takialdin, A.H. Interactions Investigation of New Composite Material Formed from Bauxite and Melamine-Urea Formaldehyde Copolymer. Ibn Al-Haitham Journal. for Pure & Appl. Sci. 2016, 29(1), 181–192. https://doi.edu.iq/index.php/j/article/view/57
Mingye, W.L.; Ma, B.L.; Wenjian, Z.; Hao, Z.; Guangshun, W.; Yudong, H.; Guojun, S. One-step generation of silica particles onto graphene oxide sheets for superior mechanical properties of epoxy composite and scale application. Composites Communications 2020, 22, 1–7. https://doi.10.science /article/abs/pii/S2452213920302424
Xiaomin, Y.; Bo, Z.; Xun, C.; Jianjun, L.; Kun, Q.; Junwei, Yu. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent. Journal of Applied Polymer Science 2017, 134(17), 1–11, https://doi:10.1002/app.44757.10.1002
Adil, I.K.; Dhefaf, H.B.; Zainab, S.A. The Effect of Phoenix Dactylifera L. Pinnae Reinforcement on The Mechanical and Thermal Properties of Polymer Composite. Journal of the college of basic education 2019, 104(25), 339–349. https://doi:index.php/cbej/article /view/4654
Darbyshire, J.L. Mapping Sources of Noise in an Intensive Care Unit. Anesthesia. 2019, 74(8), 18–25. https://doi.org/10.15251/NHB.2023.543.908