Assessment of Serum Angiotensin Converting Enzyme 2 and Urine Albumin to Creatinine Ratio as Early Detection of Diabetic Nephropathy

Authors

DOI:

https://doi.org/10.30526/38.3.3610

Keywords:

Angiotensin converting enzyme-2, Albumin to creatinine ratio, Type 2 diabetes mellitus, Diabetic nephropathy, Albuminuria

Abstract

Diabetic nephropathy (DN) is a chronic disease manifested by a decreased glomerular filtration rate (GFR) that leads to the progression of kidney failure and increased incidence of mortality and cardiovascular complications. Type 2 diabetes mellitus (T2DM) is a metabolic disorder that affects multiple organs, including the pancreas, as well as the kidneys, liver, brain, and eyes. Angiotensin-converting enzyme 2 (ACE2) is a component of the renin-angiotensin system, which is highly expressed in renal tubular epithelial cells. This study aims to measure ACE2 and the urine albumin-to-creatinine ratio (ACR) as early detection markers for DN among T2DM patients. The sample size consisted of 135 individuals, who were divided into three groups based on ACR criteria: macroalbuminuria, microalbuminuria, and normoalbuminuria, with healthy subjects serving as the control group. They were intended for Telafer Hospital in Mosul City. The data showed significant differences between patient groups and the control group for glycemic, lipid profile, and kidney function tests. Also, the results showed a considerable association between serum glycemic levels, lipid profiles, kidney function tests, and ACE2 and DN in T2DM patients. From the current data, it can be concluded that ACR and ACE2 play a key protective role in preventing progressive renal damage, which is a good indicator for the early detection of DN.

Author Biographies

  • Sarah Sattar Jabbar, Telafer University

    Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq. 

  • Sanad Baqir Mahammed , Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.

    Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq. 

References

1. Valencia WM, Florez H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ. 2017;356:i6505. https:/doi.org/10.1136/bmj.i6505.

2. Zhang S, Li X, Luo H, Fang ZZ, Ai H. Role of aromatic amino acids in the pathogenesis of diabetic nephropathy in Chinese patients with type 2 diabetes. J Diabetes Complications. 2020;34(10):107667. https://doi.org/10.1016/j.jdiacomp.2020.107667.

3. Al-Khdhairi ZMA, Ali BH. Comparison study of the effect of Erlotinib as a tyrosine kinase inhibitor on electrolyte levels in type 2 diabetic and diabetic nephropathy patients. Ibn Al-Haitham J Pure Appl Sci. 2018;31(3):63-69. https://doi.org/10.30526/31.3.2011.

4. Bakker AJ. Detection of microalbuminuria. Receiver operating characteristic curve analysis favors albumin-to-creatinine ratio over albumin concentration. Diabetes Care. 1999;22(2):307. https://doi.org/10.2337/diacare.22.2.307.

5. Farhan LO, Abed BA, Dawood A. Comparison study between adipsin levels in sera of Iraqi patients with diabetes and neuropathy. Baghdad Sci J. 2023;20(3):726-726. https://doi.org/10.21123/bsj.2022.7408.

6. Jafer AA, Ali BH. Evaluation of osteocalcin and some biochemical markers in Iraqi women patients with diabetes mellitus and osteoporosis. Ibn Al-Haitham J Pure Appl Sci. 2023;36(1):225-235. https://doi.org/10.30526/36.1.2984.

7. Hameed ASE. Estimation activity and partial purification of leucine amino peptidase (LAP) in patients with diabetic nephropathy. Baghdad Sci J. 2012;9(4):689-694. https://doi.org/10.21123/bsj.2012.9.4.689-694.

8. Abbed AM. Effect of Metformin and Glimepiride treatment on some biochemical parameters in diabetic male patients with chronic renal failure. Ibn Al-Haitham J Pure Appl Sci. 2019;32(2):38-44. https://doi.org/10.30526/32.2.2137.

9. Hameed EK, Al-Ameri LT, Hasan HS, Abdulqahar ZH. The cut-off values of triglycerides-glucose index for metabolic syndrome associated with type 2 diabetes mellitus. Baghdad Sci J. 2022;19(2):2078-8665. https://doi.org/10.21123/bsj.2022.19.2.0340.

10. Sadiq CH, Hussein RH, Maulood IM. Ghrelin and leptin and their relations with insulin resistance in type 2 diabetes mellitus patients. Baghdad Sci J. 2022;19(1):33-33. https://doi.org/10.21123/bsj.2022.19.2.0340.

11. South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC. Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci. 2019;133(1):55-74. https://doi.org/10.1042/CS20171550.

12. Soler MJ, Wysocki J, Batlle D. ACE2 alterations in kidney disease. Nephrol Dial Transplant. 2023;28(11):2687-2697. https://doi.org/10.1093/ndt/gft320.

13. Guy JL, Jackson RM, Acharya KR, Sturrock ED, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry. 2003;42(45):13185-13192. https://doi.org/10.1021/bi035268s.

14. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Acton S. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):e1. https://doi.org/10.1161/01.RES.87.5.e1.

15. South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC. Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci. 2019;133(1):55-74. https://doi.org/10.1042/CS20171550.

16. John D, Mark ZL. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852-862. https://doi.org/10.2215/CJN.10741013.

17. Bamanikar SA, Bamanikar AA, Arora A. Study of serum urea and creatinine in diabetic and nondiabetic patients in a tertiary teaching hospital. J Med Res. 2016;2(1):12-15. https://doi.org/10.31254/jmr.

18. Shanmugasundaram K. Correlation between microalbuminuria and atherogenic index in evaluating coronary vascular risk in newly diagnosed type 2 diabetes [Doctoral dissertation]. Asaripallam: Kanyakumari Government Medical College Hospital; 2019. https://epository-tnmgrmu.ac.in/11184/1/200108719.

19. Hirano T. Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol. 2014;18:206-209. https://doi.org/10.1007/s10157-013-0880-y.

20. Kachhawa K, Agrawal D, Rath B, Kumar S. Association of lipid abnormalities and oxidative stress with diabetic nephropathy. J Integr Nephrol Androl. 2017;4(1):3. https://doi.org/10.4103/jina.jina_1_17.

21. Li M, Tian M, Jiang X, Liu Y, Wang Y, Li Y. Inhibition of galectin-3 ameliorates high-glucose-induced oxidative stress and inflammation in ARPE-19 cells. Cutaneous Ocular Toxicol. 2022;41(2):179-186. https://doi.org/10.1080/15569527.2022.2081701.

22. Thi TND, Gia BN, Le Thi HL, Thi TNC, Thanh HP. Evaluation of urinary L-FABP as an early marker for diabetic nephropathy in type 2 diabetic patients. J Med Biochem. 2020;39(2):224-230. https://doi.org/10.2478/jomb-2019-0037.

23. Sueud T, Hadi NR, Abdulameer R, Jamil DA, Al-Aubaidy HA. Assessing urinary levels of IL-18, NGAL, and albumin creatinine ratio in patients with diabetic nephropathy. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):564-568. https://doi.org/10.1016/j.dsx.2018.11.022.

24. Ferguson MA, Waikar SS. Established and emerging markers of kidney function. Clin Chem. 2012;58(4):680-689. https://doi.org/10.1373/clinchem.2011.167494.

25. Yassin MM, AbuMustafa AM, Yassin MM. Serum leptin in diabetic nephropathy male patients from Gaza Strip. Diabetes Metab Syndr. 2019;13(2):1245-1250. https://doi.org/10.1016/j.dsx.2019.02.004.

26. Abbas HS, Nada SZ, Fadhel AA. Assessment of transforming growth factor-beta (TGF-B) and albumin to creatinine ratio (ACR) in patients with type 2 diabetic nephropathy. World J Pharm Pharm Sci. 2022;8(11):88-103. https://doi.org/10.20959/wjpps20228-22902.

27. Morton JI, Liew D, McDonald SP, Shaw JE, Magliano DJ. The association between age of onset of type 2 diabetes and the long-term risk of end-stage kidney disease: a national registry study. Diabetes Care. 2020;43(8):1788-1795. https://doi.org/10.2337/dc20-0352.

28. Al-Bayati HAA, Al-Khateeb JSM. The association between glycaemic level and lipid profile with albuminuria in Iraqi type 2 diabetes patients: A cross-sectional study. J Pak Med Assoc. 2021;71(8):57-62. PMID: 35130220.

29. Liu LP, Zhang XL, Li J. New perspectives on angiotensin-converting enzyme 2 and its related diseases. World J Diabetes. 2021;12(6):839-854. https://doi.org/10.4239/wjd.v12.i6.839.

30. Abdullah BI, Salih SF. Lipoprotein (a) level among patients with type 2 diabetes mellitus and prediabetes in comparison with healthy controls. Sci J Univ Zakho. 2023;11(1):30-36. https://doi.org/10.25271/sjuoz.2023.11.1.996.

31. Chutani A, Pande S. Correlation of serum creatinine and urea with glycemic index and duration of diabetes in Type 1 and Type 2 diabetes mellitus: A comparative study. Natl J Physiol Pharm Pharmaco. 2017;7(9):914-919. https://doi.org/10.5455/njppp.2017.7.0515606052017.

32. Deepa K, Manjunatha G, Oinam S, Devaki R, Bhavna N, Asha P. Serum urea, creatinine in relation to fasting plasma glucose levels in type 2 diabetes. Int J Pharm Bio Sci. 2011;1(1):279-283. https://doi.org/10.52403/ijhsr.20230303.

33. Nazar CM. Diabetic nephropathy: Principles of diagnosis and treatment of diabetic kidney disease. J Nephropharmacol. 2014;3(1):15-20. https://pubmed.ncbi.nlm.nih.gov/28197454.

34. Wang W. Different doses of tripterygium glycosides in the treatment of diabetic nephropathy: effects on blood lipids. Kidney Blood Press Res. 2018;43(3):931-937. https://doi.org/10.1159/000490472.

35. Benzing T, Salant D. Insights into glomerular filtration and albuminuria. N Engl J Med. 2021;384(15):1437-1446. https://doi.org/10.1056/NEJMra1808786.

36. Bamanikar SA, Bamanikar AA, Arora A. Study of serum urea and creatinine in diabetic and nondiabetic patients in a tertiary teaching hospital. J Med Res. 2016;2(1):12-15. https://www.crossref.org/titleList.

37. Cai Z, Yang Y, Zhang J. A systematic review and meta-analysis of the serum lipid profile in prediction of diabetic neuropathy. Sci Rep. 2021;11(1):499. https://doi.org/10.1038/s41598-020-79276-0.

38. Timar B, Albai O. The relationship between hemoglobin A1c and chronic complications in diabetes mellitus. Romanian J Diabetes Nutr Metab Dis. 2012;19(2):115-122. https://rjdnmd.org/index.php/RJDNMD/article/view/276.

39. Pagliaro P, Thairi C, Alloatti G, Penna C. Angiotensin-converting enzyme 2: a key enzyme in key organs. J Cardiovasc Med. 2022;23(1):1-1. https://doi.org/10.2459/JCM.0000000000001218.

40. Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol. 2011;6(10):2444-2451. https://doi.org/10.2215/CJN.00580111.

41. Fiseha T, Ahmed E, Chalie S, Gebreweld A. Prevalence and associated factors of impaired renal function and albuminuria among adult patients admitted to a hospital in Northeast Ethiopia. PLOS ONE. 2021;16(2):e0246509. https://doi.org/10.1371/journal.pone.0246509

Downloads

Published

20-Jul-2025

Issue

Section

Chemistry

How to Cite

[1]
Jabar, S. sattar and Mahammed , S.B. 2025. Assessment of Serum Angiotensin Converting Enzyme 2 and Urine Albumin to Creatinine Ratio as Early Detection of Diabetic Nephropathy. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 3 (Jul. 2025), 227–235. DOI:https://doi.org/10.30526/38.3.3610.