Synthesis Gold Nanoparticles by Plasma Jet as Different Diameters of System

Main Article Content

Ban H. Adil
Maryam Ali Raheem

Abstract

In this work, gold nanoparticles (AuNPs) were created utilizing a plasma jet method and 0.5 gm/mol of gold salts (4H2O•HAuCl4) with varied flow diameters (0.6 mm, 0.8 mm, 1 mm, and 1.2 mm). The gas flow changes according to the system diameter (2,2.4,3.4, and 3.6 L/min, respectively). X-ray diffraction, ultraviolet, visible spectra, and FESEM were each used to investigate the nanoparticles. The XRD pattern revealed that the film's extreme peaks reflect crystallinity, with an average crystallite size of (18–26) nm and a face-centered cubic structure. The surface plasmon resonance for colloidal AuNPs produced in the UV was at 536–540 nm.A field emission scanning electron microscope (FESEM) was used to look at the morphology of the Au NPs. The round particles ranged in size from (38-65) nm. The findings of this work provide encouraging evidence for the straightforward and inexpensive production of nanomaterials with various dimensions.

Article Details

How to Cite
[1]
Adil, B.H. and Ali Raheem, M. 2024. Synthesis Gold Nanoparticles by Plasma Jet as Different Diameters of System. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 187–193. DOI:https://doi.org/10.30526/37.3.3631.
Section
Physics

How to Cite

[1]
Adil, B.H. and Ali Raheem, M. 2024. Synthesis Gold Nanoparticles by Plasma Jet as Different Diameters of System. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 187–193. DOI:https://doi.org/10.30526/37.3.3631.

Publication Dates

Received

2023-06-27

Accepted

2023-08-01

Published Online First

2024-07-20

References

Abdullah, Q.; Obaid, A.; Bououdina, M. Influence of gas carrier on morphological and optical properties of nanostructured In2O3 grown by solid-vapor process. Ceramics International 2018, 44, 4699-4703. https://doi.org/10.1016/J.CERAMINT.2017.12.051.

Nakamura, S.; Sato, M.; Sato, Y.; Ando, N.; Takayama, T.; Fujita, M.; Ishihara, M. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. International journal of molecular sciences 2019, 20(15), 23-34.https://doi.org/10.3390 /ijms20153620.

Rakaa, J.; Obaid, A.S. Preparation of Nanoparticles in an Eco-friendly Method using Thyme Leaf Extracts. Baghdad Science Journal. 2020, 17(2), 670-681. https://doi.org/10.21123/bsj.2020.17.2% 28si%29.0670.

Jesús, R.; Reyes-López, A.; Larrañaga, S.Y.; Estévez, M.; Pérez, D.R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics. 2017, 7, 2639-2643. http://dx.doi.org/10.1016/j.rinp.2017.07.044.

Al-Saadi, T.M.; Luay, J.k. Preparation of Silver Nanoparticles by Sol-Gel Method and Study their Characteristics. Ibn AL-Haitham Journal for Pure and Applied Sciences 2017, 28(1), 301–310.

Jeevanandam, J.; Kiew, S.F.; Boakye-Ansah, S.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts‏. Nanoscale. 2022, 14(7), 2534–2571. https://doi.org/10. 1039/d1nr08144f.

Quintero-Quiroz, C.; Acevedo, N.; Zapata-Giraldo, J.; Botero Luz, E.; Quintero, J.; Zárate-Triviño, D.; Saldarriaga, J.; Pérez, V.Z. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Research 2019, 23(27),23-45. https://doi.org/10.1186%2Fs40824-019-0173-y.

Widatalla, H.A.; Yassin, L.F.; Alrasheid, A.A.; Ahmed, S.; Widdatallah, M.O.; Eltilib, S.H.; Mohamed, A.A. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances. 2022, 4(3), 911–915. https://doi.org/10.1039/d1na00509j.

Rakaa, J.M.; Obaid, A.S. Biosynthesis of silver nanoparticles using Thyme vulgaris leaves extract and its antibacterial activity. Iraqi Journal of Physics 2020, 18(46), 1-12. https://doi.org /10.30723/ijp.v18i46.559.

Hammami, I.; Alabdallah, N.M. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University Science 2021, 33, 7, 101560. https://doi.org/10.1016 /J.JKSUS.2021.101560.

Padilla-Cruz, A.L.; Garza-Cervantes, J.A.; Vasto-Anzaldo, X.G.; García-Rivas, G.; Buitimea, A.L.; Morones-Ramírez, J.R. Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens. Scientific Reports 2021, 11(1), 1-10. https://doi.org/10.1038/s41598-021-84768-8.

Adil, B.H.; Al-Shammari, A.M.; Murbat, H.H. Breast cancer treatment using cold atmospheric plasma generated by the FE-DBD scheme. Clinical Plasma Medicine 2020, 19, 100103. https://doi.org/10.1016/j.cpme.2020.100103.

Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics 2012, 45, 26, 263001. https://doi.org/10.1088/0022-3727%2F45%2F26% 2F263001.

Guerrero-Preston, R.; Ogawa, T.; Uemura, M.; Shumulinsky, B.G.; Valle, L.; Pirini, F.; Ravi, R.; Sidransk, D.; Keidar, M.; Trink, B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. International Journal of Molecular Medicine 2014, 34(4), 941-946. https://doi.org/10.3892/ijmm.2014.1849.

Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; Van Dijk, J.; Zimmermann, J. L. Plasma medicine: an introductory review. New Journal of Physics 2009, 11, 11, 115012. https://doi.org/10.1088/1367-2630%2F11%2F11%2F115012.

Graves, D.; Hamaguchi, S.; O'Connell, D. Biointerphases. 2015, 10(2), 029301.

Khun, J.; Machková, A.; Kašparová, P.; Klenivskyi, M.; Vaňková, E.; Galář, P.; Julák, J.; Scholtz, V. Non-thermal plasma sources based on cometary and point-to-ring discharges. Molecules..2021, 27(1), 238-245. https://doi.org/10.3390/molecules27010238.

Mohammed, M.S.; Adil, B.H.; Obaid, A.S.; Al-Shammari, A.M. Plasma Jet Prepared Gold and Silver Nanoparticles to Induce Caspase-Independent Apoptosis in Digestive System Cancers. In Materials Science Forum 2022, 1050, 51-63. https://doi.org/10.1016/j.cpme.2020.100103.

Kaddoori, F.F.; Oleiwi, H.F.; Obaid, A.S.; Al-Ansari, R.A.; Adil, B.H.; Adnan. A.F. The effect of plasma jet-generated gold nanoparticles on liver functions. In AIP Conference Proceedings 2022, 2437, 1, 020003. https://doi.org/10.1063/5.0092329.

Vasudevan, A.; Shvalya, V.; Košiček, M.; Zavašnik, J.; Jurov, A.; Santhosh, N.M.; Zidanšek, A.; Cvelbar, U. From faceted nanoparticles to nanostructured thin film by plasma-jet redox reaction of ionic gold. Journal of Alloys and Compounds 2022, 928, 167155. https://doi.org/ 10.1016/j.jallcom.2022.167155.

Ibrahim, K.; Khalid, S.; Idrees, K. Nanoparticles: Properties, Applications and toxicities. Arabian Journal of Chemistry 2019, 12, 7, 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011.

Norton, K.J.; Firoz, A.; David, J.L.; A review of the synthesis, properties, and applications of bulk and two-dimensional tin (II) sulfide (SnS). Applied Sciences 2021, 11, 5, 2062. https://doi.org /10.3390/app11052062.

Yu, J.; Yingeng, W.; Yan, H.; Xiuwen, W.; Jing, G.; Jingkai, Y.; Hongli, Z. Structural and electronic properties of SnO2 doped with non-metal elements. Beilstein Journal of Nanotechnology 2020, 11(1), 1321-1328. https://doi.org/10.3762/bjnano.11.116.

Pargoletti, E.; Umme, H.H.; Iolanda, D.B.; Hongjun, C.; Thanh, T.P.; Gian, L.; Chiarello, J.; Lipton, D.; Valentina, P.; Antonio, T.; Giuseppe, C. Engineering of SnO2–graphene oxide nano heterojunctions for selective room-temperature chemical sensing and optoelectronic devices. ACS Applied Materials & interfaces 2020, 12(35), 39549-39560. https://doi.org/10.1021/acsami. 0c09178.

Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S.; Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. The Journal of Physical Chemistry C. 2008, 112(17), 6643-6647. https://doi.org/10.1021/jp8003147.

Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science 2014, 66, 112-255. https://doi.org/10.1016/j.pmatsci. 2014.06.003.

Castro, A.; Marques, M.A.; Rubio, A. Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics 2004, 12(8), 3425-33. https://doi.org/10. 1063/1.1774980.

Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M.E.; Burke, K.; Müller. K.R. Bypassing the Kohn-Sham equations with machine learning. Nature Communications 2017, 8, 1, 872. https://doi.org /10.1038/s41467-017-00839-3.

Sahoo, L.; Bhuyan, S.; Das, S.N. Structural, morphological, and impedance spectroscopy of Tin oxide-Titania based electronic material. Physica B: Condensed Matter 2023, 654, 414705. https://doi.org/10.1016/j.physb.2023.414705.

Tui, R.; Sui, H.; Mao, J.; Sun, X.; Chen, H.; Duan, Y.; Yang, P.; Tang, Q.; He, B. Round-comb Fe2O3& SnO2 heterostructures enable efficient light harvesting and charge extraction for high-performance all-inorganic perovskite solar cells. Journal of Colloid and Interface Science 2023, 15, 640, 18-27. https://doi.org/10.1016/j.jcis.2023.03.034.

Du, B.; Kun, He.; Gangqi, T.; Xiang, C.; Lin, S. Robust Electron Transport Layer of SnO2 for Efficient Perovskite Solar Cells: Recent Advances and Perspectives. Journal of Materials Chemistry C. 2023, 12, 3. http://dx.doi.org/10.1016/j.optmat.2023.113518.