Effect of Superficially Porous Particles on Chromatographic Analysis Time of Flavonoids
DOI:
https://doi.org/10.30526/38.2.3639Keywords:
HALO-HILIC column, Kaempferol, Luteolin, Medicinal herbs, Superficial particlesAbstract
Due to superficial particles and remarkable packing technologies, the HALO-HILIC column outperformed regular porous columns in terms of analysis time. This study analyzes and identifies kaempferol and luteolin flavonoids in natural herbs. A fast, novel chromatographic method combining superficially porous silica particles packed in a column served as the separation tool for hydrophilic interaction liquid chromatography coupled with a UV detection system is being introduced in this work. Flavonoid separation and quantification took six minutes using only superficial porous particles in the HILIC column compared to hours using fully porous particles in the RP columns. The findings demonstrated that the HILIC mode might be utilized to determine kaempferol and luteolin levels in ginkgo plant samples. A commercial HALO-HILIC column was used to create the calibration curve, which had the following specifications: linear range (0.065-35 µgmL-1 for kaempferol and 0.065-9 µgmL-1 for luteolin), RSD% not exceeding 0.54%, the limit of quantification (0.036 µgmL-1 for kaempferol and 0.024 µgmL-1 for luteolin), and limit of determination (0.012 µgmL-1 for kaempferol and 0.008 µgmL-1 for luteolin).
References
1. Grotewold E. The science of flavonoids. Springer, 2006. https://link.springer.com/book/10.1007/978-0-387-28822-2.
2. Holiman PC, Hertog MG, Katan MB. Analysis and health effects of flavonoids. Food Chem. 1996; 57(1):43-46. https://doi.org/10.1016/0308-8146(96)00065-9.
3. Chen ZY, Chan PT, Ho KY, Fung KP, Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids. 1996; 79(2): 157-163. https://doi.org/10.1016/0009-3084(96)02523-6.
4. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020; 12(2):457. https://doi.org/10.3390/nu12020457.
5. Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo G L,Roles of flavonoids against coronavirus infection. Chem Biol Interact. 2020; 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211.
6. Chen GL, Fan MX,Wu JL, Li N,Guo MQ.Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019; 277:706-712. https://doi.org/10.1016/j.foodchem.2018.11.040.
7. Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral properties of flavonoids and delivery strategies. Nutrients. 2020; 12(9):2534. https://doi.org/10.3390/nu12092534.
8. Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. AJPS. 2018; 13(1):12-23. https://doi.org/10.1016/j.ajps.2017.08.004.
9. Teng H, Deng H, Zhang C,Cao H, Huang Q, Chen L. The role of flavonoids in mitigating food originated heterocyclic aromatic amines that concerns human wellness. Food Sci Hum. Wellness. 2023; 12(4):975-985. https://doi.org/10.1016/j.fshw.2022.10.019.
10. Waheb AA, Rasheed AS, Hassan MJM. Quantification of ketoprofen in film-coated tablets using hydrophilic interaction liquid chromatography-Ultraviolet spectrometry. EJCHEM. 2022; 65(9):1-4. https://doi.org/10.21608/ejchem.2022.113077.5138.
11. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013; 62750:1-16. https://doi.org/10.1155/2013/162750.
12. Kr RR, Rasheed AS, Hassan MJM. Zwitterion chromatography-hydrophilic interaction chromatography for separation and quantitative of rutin and quercetin from herbs and bee products. J Chem Soc Pak. 2021; 43(4):484-492.
13. AL-Ayash AS, Khammas ZA, Jasim F. Determination of desferrioxamine in the drug desferal™ as dfom-Au (iii) complex by using indirect electrothermal atomic absorption spectrometry and other techniques. Baghdad Sci J. 2008; 5(3):409-415. https://doi.org/10.21123/bsj.2008.11874.
14. Teng H, Zheng Y, Cao H, Huang Q, Xiao J, Chen L. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: A review. Crit Rev Food Sci Nutr. 2023; 63(3):378-393. https://doi.org/10.1080/10408398.2021.1947772.
15. Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit Rev Food Sci Nutr. 2023; 63(20):4757-4784. https://doi.org/10.1080/10408398.2021.2007353.
16. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009; 2(5):270-278. https://doi.org/10.4161/oxim.2.5.9498.
17. Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, Cheng KW, Wang M, Arroo RR, Zou L, Farag MA, Zhao Y, Xiao J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr. 2023; 63(16):2773-2789. https://doi.org/10.1080/10408398.2021.1980762.
18. BianY, Lei J, Zhong J, Wang B, Wan Y, Li J,Liao C, He Y, Liu Z, Ito K, Zhang B. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J Nutr Biochem. 2022; 99:108840. https://doi.org/10.1016/j.jnutbio.2021.108840.
19. Alam W, Khan H, Shah MA, Cauli O, Saso L. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules. 2020; 25(18):4073. https://doi.org/10.3390/molecules25184073.
20. Imran M, Salehi B, Sharifi-Rad J, Gondal TA, Saeed F, Imran A, Shahbaz M, Fokou PVT, Arshad MU, Khan H,Guerreiro SG, Martins N, Estevinho LM. Kaempferol: A key emphasis to its anticancer potential. Molecules. 2019; 24(12):2277. https://doi.org/10.3390/molecules24122277.
21. Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem. 2023; 129(4):984-997. https://doi.org/10.1080/13813455.2021.1890129.
22. Santos JSD, Cirino JPG, Carvalho PDO, Ortega MM. The pharmacological action of kaempferol in central nervous system diseases: A review. Front Pharmacol. 2021; 11:565700. https://doi.org/10.3389/fphar.2020.565700.
23. Azeem M, Hanif M, Mahmood K, Ameer N, Chughtai FRS, Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym Bull (Berl). 2023; 80(1):241-262. https://doi.org/10.1007/s00289-022-04091-8.
24. Caporali S, De Stefano A, Calabrese C, Giovannelli A, Pieri M, Savini I, Tesauro M, Bernardini S, Minieri M, Terrinoni A. Anti-inflammatory and active biological properties of the plant-derived bioactive compounds luteolin and luteolin 7-glucoside. Nutrients. 2022; 14(6):1155. https://doi.org/10.3390/nu14061155.
25. Franza L, Carusi V, Nucera E, Pandolfi F. Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors. 2021; 47(2):181-189S. https://doi.org/10.1002/biof.1710.
26. AL-Ayash AS, Muhamad YH, Ghafouri SA. Spectrophotometric determination of epinephrine in pharmaceutical preparations using praseodymium as mediating metals. Baghdad Sci J. 2011; 8(1):110-117. https://doi.org/10.21123/bsj.2011.8.1.110-117.
27. Ge X, He X, Liu J, Zeng F, Chen L, Xu W, Shao R, Huang Y, Farag MA, Capanoglu E, El-Seedi HR, Zhao C, Liu B. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J Adv Res. 2023; 46:173-188. https://doi.org/10.1016/j.jare.2022.06.003.
28. Nguyen TLA, Bhattacharya D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules. 2022; 27(8):2494. https://doi.org/10.3390/molecules27082494.
29. Di Stadio A, D'Ascanio L, Vaira LA, Cantone E, De Luca P, Cingolani C, Motta G, De Riu G, Vitelli F, Spriano G, De Vincentiis M, Camaioni A, La Mantia I, Ferreli F, Brenner MJ. Ultramicronized palmitoylethanolamide and luteolin supplement combined with olfactory training to treat post-COVID-19 olfactory impairment: a multi-center double-blinded randomized placebo-controlled clinical trial. Curr Neuropharmacol. 2022; 20(10):2001-2012.
https://doi.org/10.2174/1570159x20666220420113513.
30. Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long‐COVID syndrome‐associated brain fog and chemofog: Luteolin to the rescue. Biofactors. 2021; 47(2):232-241. https://doi.org/10.1002/biof.1726.
31. ChemAxon EU UGM. Predictive data. 2022.
32. Merken HM, Beecher GR. Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem. 2000; 48 (3):577-599. https://doi.org/10.1021/jf990872o.
33. Singh S, Uddin M, Khan MMA, Chishti AS, Bhat UH. Therapeutic properties of capsaicin: a medicinally important bio-active constituent of chilli pepper. AJPCR. 2022; 15(7):47-58. http://dx.doi.org/10.22159/ajpcr.2022.v15i7.44405.
34. Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, Gebhardt S. Flavonoid content of US fruits, vegetables, and nuts. J Agric Food Chem. 2006; 54(26):9966-9977. https://doi.org/10.1021/jf061478a.
35. AL-Ayash AS, Jasim F, Zair T. Spectrophotometric micro determination of drug promethazine hydrochloride in some pharmaceutical by chelating with Rhodium. Baghdad Sci J. 2008; 5(4):639-645. https://doi.org/10.21123/bsj.2008.5.4.638-645
36. Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem. 2003; 51(3):571-581. https://doi.org/10.1021/jf020926l.
37. Lee JE, Kim GS, Park S,Kim YH, Kim MB, Lee WS, Jeong SW, Lee SJ, Jin JS, Shin SC. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014; 146:1-5. https://doi.org/10.1016/j.foodchem.2013.09.029.
38. Pace B, Capotorto I, Cefola M, Minasi P, Montemurro N, Carbone V. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere. J Food Compos Anal. 2020; 86:103363. https://doi.org/10.1016/j.jfca.2019.103363.
39. Jing J, Parekh HS, Wei M, Ren WC, Chen SB. Advances in analytical technologies to evaluate the quality of traditional Chinese medicines. Trac-Trend Anal Chem. 2013; 44:39-45. https://doi.org/10.1016/j.trac.2012.11.006.
40. Fahad AMM, Rasheed AS, Ali HH. Hydrophilic interaction chromatography with sulfobetaine zwitterionic polymer-bonded stationary phases for the simultaneous quantification of atorvastatin and rosuvastatin pharmaceuticals in bulk and dosage forms. JCSP. 2022; 44(4):330-337. https://doi.org/10.52568/001070/JCSP/44.04.2022.
41. Fahad AMM, Rasheed AS, Ali HH. Separation and determination of simvastatin on ZIC-HILIC stationary phases by hydrophilic interaction chromatography in pharmaceutical material products. Mater Today: Proc. 2022; 49 (7):2817-2821. https://doi.org/10.1016/j.matpr.2021.09.535.
42. Qassim AW, Rasheed AS, Abdulrahman SK. Hydrophilic interaction chromatographic analysis of genistein in herbs and propolis. Sys Rev Pharm. 2020; 11(12):756-763.
43. Schwarz M, Rodríguez MC, Guillén DA, Barroso CG. Development and validation of UPLC for the determination of phenolic compounds and furanic derivatives in Brandy de Jerez. JSS. 2009; 32(11): 1782-1790. https://doi.org/10.1002/jssc.200800706.
44. Salisbury JJ. Fused-core particles: a practical alternative to sub-2 micron particles. JCS. 2008; 46(10):883-886. https://doi.org/10.1093/chromsci/46.10.883.
45. Ali I, AL‐Othman ZA, Al‐Za'abi M. Superficially porous particles columns for super fast HPLC separations. BMC. 2012; 26(8):1001-1008. https://doi.org/10.1002/bmc.2690.
46. Fadhil AK, Rasheed AS, Hassan MJM. A review of recent advances in the estimation of pharmaceutical products using hydrophilic interaction chromatography (HILIC) technology. Egypt. J. Chem. 2023; 66(1):399-417. https://doi.org/10.21608/ejchem.2022.121396.5443.
47. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A. 1990; 499:177-196. https://doi.org/10.1016/S0021-9673(00)96972-3.
48. Waheb AA, Rasheed AS, Hassan MJM. Strategies for the separation and quantification of non-steroidal anti-inflammatory drugs using ZIC-HILIC-HPLC with UV detection. Curr Pharm Anal. 2022; 18(10):949-958. https://doi.org/10.2174/1573412918666220915090831.
49. Fadhil AK, Rasheed AS, Hassan MJM. Evaluation and application of ZIC-HILIC columns selectivity for four angiotensin II receptor blockers in pharmaceutical formulations. Curr Pharm Anal. 2022; 18 (9):901-908. https://dx.doi.org/10.2139/ssrn.4008001.
50. Jandera P, Janás P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta. 2017; 967:12-32. https://doi.org/10.1016/j.aca.2017.01.060.
51. Chauve B, Guillarme D, Cléon P, Veuthey JL. Evaluation of various HILIC materials for the fast separation of polar compounds. J Sep Sci. 2010; 33(6‐7):752-764. https://doi.org/10.1002/jssc.200900749.
52. Hsieh Y, Galviz G, Long BJ. Ultra‐performance hydrophilic interaction liquid chromatography/ tandem mass spectrometry for the determination of everolimus in mouse plasma. Rapid Commun Mass Spectrom. 2009; 23(10):1461-1466. https://doi.org/10.1002/rcm.4022.
53. Gritti F, Guiochon G. Diffusion models in chromatographic columns packed with fully and superficially porous particles. Chem Eng Sci. 2011; 66(17):3773-3781. https://doi.org/10.1016/j.ces.2011.04.039.
54. Gumustas M, Zalewski P, Ozkan SA, Uslu B. The history of the core–shell particles and applications in active pharmaceutical ingredients via liquid chromatography. Chromatographia. 2019; 82:17-48. https://doi.org/10.1007/s10337-018-3670-6.
55. Collison MW. Determination of total soy isoflavones in dietary supplements, supplement ingredients, and soy foods by high-performance liquid chromatography with ultraviolet detection: collaborative study. Journal of AOAC International. 2008; 91(3):489-500.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms