Effects of Chronic Exposure for Imidacloprid and Nano-Imidacloprid on some biochemical and hematological parameters in male rats

Authors

DOI:

https://doi.org/10.30526/38.2.3643

Keywords:

Chronic, Imidacloprid , Nano-Imidacloprid, Biochemical, Hematological, rats

Abstract

Although considered a good alternative to organophosphate pesticides, there are reports indicating adverse effects of neonicotinoid insecticides on reproduction. The present work was designed to determine the chronic effects of orally administered for treated with 20 mg/kg/b.w. of imidacloprid pesticides and treated with 20 mg/kg/b.w. of nano-imidacloprid on biochemical blood profile in male rats for a duration of 60 d. Result: the exposure caused a significant decline in red blood cells (RBCs) and hemoglobin (H.b.) in all treated groups compared with the control, while causing an increase in blood platelets (PLT) and white blood cells (WBCs) in all rats treated as compared with the control rats. Furthermore, oxidative stress parameters showed a highly significant (P≤0.05) increase in malondialdehyde (MDA) after 60 d of exposure and a decline in reduced glutathione (GSH) and catalase activity (CAT). The imidacloprid pesticides and nano-imidacloprid lead to an increase the amount of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in treated groups, while the high-density lipoprotein (HDL) level is reduced in treated groups as compared with the control group.

Author Biographies

  • Qassim Ammar Ahmood AL-Janabi, Department of Environment, Collage of Environment Science, Al-Qasim Green University, Babylon, Iraq.

    Department of Environment

  • Hind Suhail Abdulhay, Department of Biology, Collage of Science, University of Baghdad, Baghdad-Iraq

    Department of Biology

References

1. Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, Phung DT. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 2021;18(3):1112. https://doi.org/10.3390/ijerph18031112.

2. Casillas A, de la Torre A, Navarro I, Sanz P, Martínez MA. Environmental risk assessment of neonicotinoids in surface water. Sci Total Environ. 2022;809:151161. https://doi.org/10.1016/j.scitotenv.2021.151161.

3. Sunaryani A, Rosmalina RT. Persistence of carbaryl pesticide in environment using system dynamics model. IOP Conf Ser Earth Environ Sci. 2021;623(1):012048. https://doi.org/10.1088/1755-1315/623/1/012048.

4. Gupta RC, Mukherjee IR, Malik JK, Doss RB, Dettbarn WD, Milatovic D. Insecticides. In: Biomarkers in toxicology. Academic Press; 2019. p. 455-475. https://doi.org/10.1016/B978-0-12-814655-2.00026-8.

5. Sweeney M, Thompson CM, Popescu VD. Sub-lethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ Toxicol Chem. 2021;40:1840–9. https://doi.org/10.1002/etc.5027.

6. Crayton SM, Wood PB, Brown DJ, Millikin AR, McManus TJ, Simpson TJ, Ku KM, Park YL. Bioaccumulation of the pesticide imidacloprid in stream organisms and sublethal effects on salamanders. Glob Ecol Conserv. 2020;24:e01292. https://doi.org/10.1016/j.gecco.2020.e01292.

7. Danis BEG, Marlatt VL. Investigating acute and subchronic effects of neonicotinoids on Northwestern salamander larvae. Arch Environ Contam Toxicol. 2021;80(4):691–707. https://doi.org/10.1007/s00244-021-00871-3.

8. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2019;22:573-80. https://doi.org/10.1016/j.tips.2019.05.011.

9. Silvanima J, Sunderman Barnes S, Copeland R, Woeber A, Miller E. Regional extent, environmental relevance, and spatiotemporal variability of neonicotinoid insecticides detected in Florida’s ambient flowing waters. Environ Monit Assess. 2022;194:416. https://doi.org/10.1007/s10661-022-10052-9.

10. Moradi FG, Hejazi J, Hamishehkar H, Enayati AA. Co-encapsulation of imidacloprid and lambda-cyhalothrin using biocompatible nanocarriers: Characterization and application. Ecotoxicol Environ Saf. 2019; 175:155-163. https://doi.org/10.1016/j.ecoenv.2019.109760.

11. Ramana MV, Chaudhari AD, Himaja M, Satyanarayana D, Dua K. An approach to minimize pseudomembranous colitis caused by clindamycin through liposomal formulation. Indian J Pharm Sci. 2007;69(3):390-3. https://doi.org/10.4103/0250-474X.34543.

12. Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077-80. https://doi.org/10.1093/clinchem/28.10.2077

13. Buege JA, Aust SD. Microsomal lipid peroxidation. In: Methods in enzymology. Academic Press; 1978. p. 302-10. https://doi.org/10.1016/S0076-6879(78)52032-6.

14. Mueller S, Riedel DH, Stremmel W. Determination of catalase activity at physiological H₂O₂ concentrations. Anal Biochem. 1997;245:55–60. https://doi.org/10.1006/abio.1996.9918.

15. Allain CC, Poon LS, Chan CS, Richmond WF, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470-5. https://doi.org/10.1093/clinchem/20.4.470.

16. Burstein MS, Scholnick H, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 1970;11(6):583-95. https://doi.org/10.1016/S0022-2275(20)39517-3.

17. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502. https://doi.org/10.1093/clinchem/18.6.499.

18. Gunstone T, Cornelisse T, Klein K, Dubey A, Donley N. Pesticides and soil invertebrates: A hazard assessment. Front Environ Sci. 2021;9:122. https://doi.org/10.3389/fenvs.2021.643847.

19. Gavel MJ, Richardson SD, Dalton RL, Soos C, Ashby B, McPhee L, et al. Effects of neonicotinoid insecticides on blood cell profiles and corticosterone concentrations of wood frogs (Lithobates sylvaticus). Environ Toxicol Chem. 2019;38(6):1273–84. https://doi.org/10.1002/etc.4420.

20. Fonseca Peña SVD, Natale GS, Brodeur JC. Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. J Toxicol Environ Health A. 2022;85(24):1019–39. https://doi.org/10.1080/15287394.2022.2121950.

21. Al-Masuody AM, Abd Al-Lateef AH. Effect of different doses of insecticide "Bifenthrin" on some physiological and biochemical blood standards in the females of rats during pregnancy period. Sci J Karbala Univ. 2013;11(3):267-75. https://www.iraqoaj.net/iasj/download/e2b4f602570e8b00.

22. Khan AM, Sultana M, Raina R, Dubey N, Dar SA. Effect of sub-acute toxicity of bifenthrin on antioxidant status and hematology after its oral exposure in goats. Proc Natl Acad Sci India Sect B Biol Sci. 2013;83(4):545-9. https://doi.org/10.1007/s40011-012-0133-2.

23. Ancheva MT, Metcheva RA, Tedorovora S. Bioaccumulation and damaging action of polymetal industrial dust on laboratory mice Mus musculusalba. II. Genetic, cell, and metabolic disturbances. Environ Res. 2013;92:152-60. https://doi.org/10.1016/j.envres.2013.06.002.

24. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos J. Ecotoxicol Environ. 2006;64:178–89. https://doi.org/10.1016/j.ecoenv.2005.03.002.

25. Cappuzzo K. Treatment of postherpetic neuralgia: Focus on pregabalin. Clin Interv Aging. 2009;4:17-23. https://doi.org/10.2147/CIA.S3205.

26. Victoria S, Hein M, Harrahy E, King-Heiden TC. Potency matters: Impacts of embryonic exposure to nAchr agonists thiamethoxam and nicotine on hatching success, growth, and neurobehavior in larval zebrafish. J Toxicol Environ Health A. 2022;85:767–82. https://doi.org/10.1080/15287394.2022.2063660.

27. Muralidharan L. Haemaro-biochemical alternations induced by chronic exposure to Fenthion in Cyprinus carpio. Trends Fish Res. 2012;1:19-25.

28. Ali AL, Mani VM, Gokulakrishnan A, Alagesan D. Protective effect of flavonoid naringin on lambda cyhalothrin induced haematological and hepato-pathological variations in male Wistar rats. Hematol Dis Ther. 2017;17(2). https://doi.org/10.1016/j.hemdt.2017.02.004.

29. Speath M. Is pregabalin a safe and effective treatment for patients with fibromyalgia? Nat Clin Pract Rheumatol. 2008;4:514-5. https://doi.org/10.1038/ncprheum0872.

30. Ojo AO, Oyinloye BE, Ajiboye BO, Ojo AB, Akintayo CO, Okezie B. Dichlorvos induced nephrotoxicity in rat kidney: Protective effects of Alstonia Boonei stem bark extract. IJP. 2014;1:429–37. https://doi.org/10.1016/j.ijp.2014.07.006.

31. Edem VF, Kosoko A, Akinyoola SB, Owoeye O, Rahamon SK, Arinola OG. Plasma antioxidant enzymes, lipid peroxidation and hydrogen peroxide in Wistar rats exposed to Dichlorvos insecticide. Arch Appl Sci Res. 2012;4:1778–81.

32. Robinson SA, Chlebak RJ, Young SD, Dalton RL, Gavel MJ, Prosser RS, et al. Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian, Rana pipiens. Environ Pollut. 2021;284:117149. https://doi.org/10.1016/j.envpol.2021.117149.

33. Dwivedi N, Flora SJ. Sub-chronic exposure to arsenic and dichlorvos on erythrocyte antioxidant defense systems and lipid peroxidation in rats. J Environ Biol. 2015;36:383–91. https://doi.org/10.1016/j.jenvbio.2015.06.012.

34. Jayasiri MMJG, Yadav CNS, Dayawansa NDK, Propper CR, Kumar V, Singleton GR. Spatio-temporal analysis of water quality for pesticides and other agricultural pollutants in Deduru Oya river basin of Sri Lanka. J Clean Prod. 2022;330:129897. https://doi.org/10.1016/j.jclepro.2021.129897.

35. Robinson SA, Gavel MJ, Richardson SD, Chlebak RJ, Milotic D, Koprivnikar J, Forbes MR. Sub-chronic exposure to a neonicotinoid does not affect susceptibility of larval leopard frogs to infection by trematode parasites, via either depressed cercarial performance or host immunity. Parasitol Res. 2019;118(9):2621–33. https://doi.org/10.1007/s00436-019-06369-8.

Downloads

Published

20-Apr-2025

Issue

Section

Biology

How to Cite

[1]
AL-Janabi, Q.A.A. and Hind Suhail Abdulhay 2025. Effects of Chronic Exposure for Imidacloprid and Nano-Imidacloprid on some biochemical and hematological parameters in male rats. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 23–30. DOI:https://doi.org/10.30526/38.2.3643.