Tin Oxide's Electronic Properties: Theoretical Insights on Band Structure and Mobility

Main Article Content

Ali Majeed Musawi

Abstract

This article presents a comprehensive theoretical study of the electronic properties of tin oxide (SnO2), with a particular focus on its band structure and carrier mobility. Through the utilization of density functional theory (DFT) and advanced computational methods, we delve into the intricacies of the electronic behavior of SnO2 . By solving the Schrödinger equation and the Kohn-Sham equation, we calculate the electronic energy eigenvalues and wave functions, which provide valuable insights into the band structure, effective mass, and carrier mobility of SnO2. Our findings contribute to a solid theoretical foundation for further experimental investigations and technological advancements in this field. In this study, we analyze the calculated band structure of SnO2 to determine the dispersion relationship between energy and wave vector in the Brillouin zone, shedding light on the nature of the bandgap, whether it is direct or indirect. Additionally, we investigate the valence band maxima and conduction band minima, crucial for understanding the transport of electrons and holes in SnO2. The results of our theoretical investigation reveal that SnO2 exhibits a well-defined bandgap, indicating its potential for effective control of electron and hole flow, thus making it suitable for diverse electronic applications. Moreover, the low effective masses of charge carriers in SnO2 facilitate their mobility, contributing to efficient charge transport within the material and enabling the development of high-performance electronic devices. By expanding our understanding of SnO2 electronic properties through theoretical investigations, we establish a solid foundation for further experimental studies and technological advancements in the field. The favorable electronic behavior of tin oxide paves the way for the development of advanced electronic devices, including optoelectronics, sensors, and energy devices, harnessing the unique characteristics of SnO2.

Article Details

How to Cite
[1]
Musawi, A.M. 2024. Tin Oxide’s Electronic Properties: Theoretical Insights on Band Structure and Mobility. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 194–202. DOI:https://doi.org/10.30526/37.3.3664.
Section
Physics

Publication Dates

Received

2023-07-08

Accepted

2023-08-14

Published Online First

2024-07-20

References

Chenaina, H.; Messaadi, C.; Jalali, J.; Ezzaouia, H. Study of structural, optical and electrical properties of SnO2 doped TiO2 thin films prepared by a facile Sol-Gel route. Inorganic Chemistry Communications. 2021, 1, 124,108401. https://doi.org/10.1016 /j.ino che.2020.108401.

Park, J.; Wissam, A.; Saidi, B.C.; Yuhua, D. Quantifying temperature dependence of electronic band gaps and optical properties in SnO2 and SnO via first-principles simulations. The Journal of Physical Chemistry C 125 2021, 40, 22231-22238. https://doi.org/10.1021/acs.jpcc.1c05716.

Dalapati, G. K.; Himani, S.; Asim, G.; Nilanjan, C.; Priyanka, B.; Qian, L.; Gopalan, S. Tin oxide for optoelectronic, photovoltaic and energy storage devices. review. Journal of Materials Chemistry A 9, 2021, 31, 16621-16684. https://doi.org/10.1039/D1TA01291F.

Mazumder, J.T.; Rishikanta, M.; Tripathy, S. K. Theoretical investigation on structural, electronic, optical and elastic properties of TiO2, SnO2, ZrO2 and HfO2 using SCAN meta-GGA functional: a DFT study. Materials Chemistry and Physics 2020, 254, 123474. https://doi.org/10.1016/j.matchemphys.2020.123474.

Liu, P.; Vladimir, S. Tin/Tin Oxide Nanostructures: Formation, Application, and Atomic and Electronic Structure Peculiarities. Nanomaterials 2023, 13, 17, 2391. https://doi.org/ 10.3390/ nano13172391.

Sahoo, L.; Bhuyan, S.; Das, S.N. Structural, morphological, and impedance spectroscopy of Tin oxide-Titania based electronic material. Physica B: Condensed Matter 2023, 654, 414705. https://doi.org/10.1016/j.physb.2023.414705.

Tui, R.; Sui, H.; Mao, J.; Sun, X.; Chen, H.; Duan, Y.; Yang, P.; Tang, Q.; He, B. Round-comb Fe2O3& SnO2 heterostructures enable efficient light harvesting and charge extraction for high-performance all-inorganic perovskite solar cells. Journal of Colloid and Interface Science 2023, 15, 640, 18-27. https://doi.org/10.1016/j.jcis.2023.03.034.

Du, B.; Kun, He.; Gangqi, T.; Xiang, C.; Lin, S. Robust Electron Transport Layer of SnO2 for Efficient Perovskite Solar Cells: Recent Advances and Perspectives. Journal of Materials Chemistry C. 2023, 12, 3, http://dx.doi.org/10.1016/j.optmat.2023.113518.

Suragtkhuu, S.; Suvdanchimeg, S.; Purevlkham, M.; Solongo, P.; Abdulaziz, S.R.; Bati, B.; Bold, Y. L. Sarangerel, D.; Munkhbayar, B. Graphene‐like monoelemental 2D materials for perovskite solar cells. Advanced Energy Materials 2023, 13, 12, 2204074. https://doi.org/10. 1002/ aenm.202204074.

Baraneedharan, P.; Shankari, A.; Arulraj, P.J.; Sephra, R.V.; Mangalaraja, A.; Mohammad, K. Nanoengineering of MXene-Based Field-Effect transistor gas sensors: advancements in next-generation electronic devices. Journal of The Electrochemical Society 2023, 170, 10, 107501. https://doi.org/10.1149/1945-7111/acfc2b.

Hu, Y.; Xiaolong, Y.; Darrell, G.; Schlom, S. D.; Kyeongjae, C.; First Principles Design of High Hole Mobility p-Type Sn–O–X Ternary Oxides: Valence Orbital Engineering of Sn2+ in Sn2+–O–X by Selection of Appropriate Elements X. Chemistry of Materials 2020, 33(1),212-225. https://doi.org/10.1021/acs.chemmater.0c03495.

Nascimento, D.; Jéssica, L.A.; Lais, C.; Iêda, M.G.; André, L.M.; Mary, C.F. The influence of synthesis methods and experimental conditions on the photocatalytic properties of SnO2. a review. Catalysts 2022, 12, 4, 428. https://doi.org/10.3390/catal12040428.

Deng, K.; Qinghua, Ch.; Liang, Li. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability. Advanced Functional Materials 2020, 30, 46, 2004209. https://doi.org/10.1002/adfm.202004209.

Sarhan, A.; Jawad, A. Mechanical manipulation of electronic properties of SnO2 monolayer. Computational Materials Science 2021, 190,110268. https://doi.org/10.1016 /j.com matsci.2020.110268.

Kim, J.; Kwang, S.K.; Chang, W.M. Efficient electron extraction of SnO2 electron transport layer for lead halide perovskite solar cell. npj Computational Materials 2020, 6)1(,100. http://dx.doi.org/10.1038/s41524-020-00370-y.

Fabris, G.S.; Azevedo, D.H.; Alves, A.C.; Paskocimas, C.A.; Sambrano, J.R.; Cordeiro, J. M. DFT studies on PbO2 and binary PbO2/SnO2 thin films. Physica E: Low-dimensional Systems and Nanostructures 2022, 136, 115037. https://doi.org/10.1016/ j.physe.2021.1 15037 .

Sharifi, H.; Prabhu, U.A.; Collin, D.W. The effect of Pt and IrO2 interlayers on enhancing the adhesion of Ti/SnO2 interface: a first principles density functional theory study. Applied Surface Science 2023, 639, 158248. https://doi.org/10.1016/j.ap susc.2023.158248.

Kohn, W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics 1999, 71, 5 1253. http://dx.doi.org/10.1103/RevMod Phys.71.1253.

Ángyán, J.G. Rayleigh-Schrödinger many-body perturbation theory for density functionals: A unified treatment of one-and two-electron perturbations. Physical Review A. 2008, 78, 2, 022510. https://doi.org/10.1103/PhysRevA.78.022510.

Mondaca, F.; Calderón, F.A.; Sergio, C.; Mtz-Enriquez, A.I. First-principles calculations of phosphorus-doped SnO2 transparent conducting oxide: Structural, electronic, and electrical properties. Computational Materials Science 2023, 216, 111877. https://doi.org/10.1016/j.com matsci.2022.111877.

Vasheghani, F.S. Optical and electronic properties of defects and dopants in oxide semiconductors. PhD diss., University of Warwick, 2013, https://hdl.handle. Net /21 44/41026.

Wang, A.; Kyle, B.; Nick, P.; Woncheol, L.; Xiao, Z.; Joshua, L., Feliciano, G.; Samuel, P.; Emmanouil, K. Electron mobility of SnO2 from first principles. arXiv preprint arXiv 2024, 2401, 12158, https://doi.org/10.48550/arXiv.2401.12158.

Feneberg, M.; Christian, L.; Mark, E.W.; Min, Y.T.; James, S.S.; Oliver, B.; Zbigniew, G.; Rüdiger, G. Anisotropic optical properties of highly doped rutile SnO2: Valence band contributions to the Burstein-Moss shift. APL Materials 2019, 7, 2, http://dx.doi. org/10.1063/1.5054351.

Singha, K.K.; Mondal, A.; Gupta, M.; Sathe, V.G.; Kumar, D.; Srivastava, S.K. Investigations of structural, optical and transport property of Sb-doped SnO2 compounds for optoelectronics application. Optik 2023, 288, 171210. https://doi.org/10.1016/ j.ijleo. 2023.171210.

Norton, K.J.; Firoz, A.; David, J.L.; A review of the synthesis, properties, and applications of bulk and two-dimensional tin (II) sulfide (SnS). Applied Sciences 2021, 11, 5, 2062. https://doi.org/10.3390/app11052062.

Yu, J.; Yingeng, W.; Yan, H.; Xiuwen, W.; Jing, G.; Jingkai, Y.; Hongli, Z. Structural and electronic properties of SnO2 doped with non-metal elements. Beilstein Journal of Nanotechnology 2020, 11(1), 1321-1328. https://doi.org/10.3762/bjnano.11.116.

Pargoletti, E.; Umme, H.H.; Iolanda, D.B.; Hongjun, C.; Thanh, T.P.; Gian, L.; Chiarello, J.; Lipton, D.; Valentina, P.; Antonio, T.; Giuseppe, C. Engineering of SnO2–graphene oxide nano heterojunctions for selective room-temperature chemical sensing and optoelectronic devices. ACS Applied Materials & interfaces 2020, 12, 35, 39549-39560. https://doi.org/10.1021/acsami. 0c09178.

Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S.; Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. The Journal of Physical Chemistry C. 2008, 112, 17, 6643-6647. https://doi.org/10.1021/jp8003147.

Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors." Progress in Materials Science 2014, 66, 112-255. https://doi.org/10.1016/j.pmatsci. 2014.06.003.

Castro, A.; Marques, M.A.; Rubio, A. Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics 2004, 121(8), 3425-33. https://doi.org/10. 1063/1.1774980.

Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M.E.; Burke, K.; Müller. K.R. Bypassing the Kohn-Sham equations with machine learning. Nature Communications 2017, 8, 1, 872. https://doi.org/10.1038/s41467-017-00839-3.