A Numerical Study for Solving Fractional-Order Systems of Optimal Control Using B-Cubic Spline
DOI:
https://doi.org/10.30526/38.2.3665Keywords:
Quasi-linear, Fractional Differential Equations; Spline; Collection; DEs; ODEs, FDEsAbstract
Using B-cubic spline base, the numerical solutions of optimal control of dynamical systems of fractional-order have been examined. In order to determine the dynamical system's control function through time whilst optimizing an objective optimal function. There are numerous applications for the optimal control system in science, engineering and the one branch of applied mathematics operations research. The primary goal of this study is to approximate the numerical solutions for a fractional-order optimal control systems in both free and non-free terminal time (TT). The collocation approach considers a numerical solution to this problem by using a B-cubic spline base. A numerical comparison has been introduced between the analytical solutions with numerical solutions using the proposed method. Exemplifications of implementations using various computer simulations revealed that the proposed method is both accurate and efficient.
References
1. Farlow SJ. Partial differential equations for scientists and engineers. Courier Dover Publications; 2012.
2. Bhrawy AH, Ezz-Eldien SS, Doha EH, Abdelkawy MA, Baleanu D. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique. Int J Control. 2017;90(1):1230-44. http://doi.org/10.1080/00207179.2016.1278267
3. Agrawal OP. A formulation and numerical scheme for fractional optimal control problems. J Vib Control. 2008;14(9-10):1291-9. http://doi.org/10.1177/1077546307087451
4. Sweilam NH, Al-Ajami TM, Hoppe RH. Numerical solution of some types of fractional optimal control problems. Sci World J. 2013;2013:306237. http://doi.org/10.1155/2013/306237
5. Bhrawy A, Doha E, Baleanu D, Ezz-Eldien S, Abdelkawy M. An accurate numerical technique for solving fractional optimal control problems. Differ Equ. 2015;15(23):1-15.
6. Akbarian T, Keyanpour M. A new approach to the numerical solution of fractional order optimal control problems. Appl Appl Math. 2013;8(2):582-97.
7. Bhrawy A, Doha E, Machado JT, Ezz-Eldien S. An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J Control. 2015;17(6):2389-402. http://doi.org/10.1002/asjc.1109
8. Sweilam N, Nagy A, El-Sayed AA. Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals. 2015;73:141-7. http://doi.org/10.1016/j.chaos.2015.01.006
9. Almeida R, Torres DF. A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 2015;80(4):1811-6. http://doi.org/10.1007/s11071-014-1378-1
10. Ahmad WM, El-Khazali R. Fractional-order dynamical models of love. Chaos Solitons Fractals. 2007;33(4):1367-75. http://doi.org/10.1016/j.chaos.2006.01.098
11. David SA, Linares JL, Pallone EM. Fractional order calculus: historical apologia, basic concepts and some applications. Rev Bras Ensino Fis. 2011;33(4):4302.
12. Al-Shaher OI, Mahmoudi M, Mechee MS. Numerical Method for Solving Fractional Order Optimal Control Problems with Free and Non-Free Terminal Time. Symmetry. 2023;15(3):624. http://doi.org/10.3390/sym15030624
13. Podlubny I. Fractional differential equations. Academic Press; 1999. http://doi.org/10.1016/S0076-5392(99)X8001-5
14. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Elsevier; 2006. http://doi.org/10.1016/S0304-0208(06)X8001-5
15. Diethelm K. The analysis of fractional differential equations. Springer; 2010. http://doi.org/10.1007/978-3-642-14574-2
16. Mainardi F. Fractional calculus and waves in linear viscoelasticity. Imperial College Press; 2010. http://doi.org/10.1142/p614
17. Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul. 2011;16(3):1140-53. http://doi.org/10.1016/j.cnsns.2010.05.027
18. Tarasov VE. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer; 2010. http://doi.org/10.1007/978-3-642-14003-7
19. Sabatier J, Agrawal OP, Machado JT, eds. Advances in fractional calculus: theoretical developments and applications in physics and engineering. Springer; 2007. http://doi.org/10.1007/978-1-4020-6042-7
20. Baleanu D, Diethelm K, Scalas E, Trujillo JJ. Fractional calculus: models and numerical methods. World Scientific; 2012. http://doi.org/10.1142/9789814355216
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms