The Impact of Cold atmospheric plasma and PLGA/ Xylitol Nanoparticles on Dental Enamel (in vitro study )
Main Article Content
Abstract
Plasma and nanotechnology are potentially effective preventive measures against dental caries. This study aims to determine the impact of cold atmospheric plasma and PLGA/Xylitol nanoparticles on dental enamel microhardness and morphological changes in dental enamel ultrastructure. Methodology: In this study, 56 maxillary first premolars were divided into five groups: one control group, four study groups, each with 11 teeth; 10 teeth were examined for microhardness; and one tooth was examined using SEM. A circular window was placed on the buccal surface of each tooth. Following a PH cycling technique to activate caries lesions on the tooth enamel, cold plasma was performed using predetermined parameters. The PLGA/Xylitol nanoparticle concentration was adjusted to 5%. The microhardness and morphological change were measured using micro vickers and Scanning Electron Microscopy (SEM) respectively, at three stages: sound, demineralization, and treatment. Result: Enamel microhardness values decreased highly significantly after the demineralization stage compared to the sound stage for all groups. After application of various agents, the microhardness values of all treated groups, excluding the control, increased highly significantly in comparison to the demineralization stage. The nanoparticles+ plasma group showed the highest microhardness recovery values. An SEM showed that the application of nanoparticles, nanoparticles + plasma, and plasma + nanoparticles caused the majority of surface defects to be repaired. Conclusion: The enamel surface treated with cold atmospheric plasma and PLGA/Xylitol nanoparticles yielded favourable results in terms of microhardness and SEM analysis, suggesting that this therapy could be recommended as a means of preventing dental caries.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Accepted
Published Online First
References
Twetman, S. Caries prevention with fluoride toothpaste in children: an update. Eur. Arch. Paediatr Dent. 2009, 10(3), 162-7. https://doi:10.1007/BF03262678
Cao, Y.; Mei, M.L.; Li, Q.L.; Lo, E.C.; Chu, C.H. Enamel prism-like tissue regeneration using enamel matrix derivative. J Dent. 2014, 42(12), 1535-42. https://doi:10.1016/j.jdent. 2014.08.014
Wang, Y.; Mei, L.; Gong, L.; Li, J.; He, S.; Ji, Y.; Sun, W. Remineralization of early enamel caries lesions using different bioactive elements containing toothpaste: An in vitro study. Technol Health Care. 2016, 24(5), 701-11. https://doi:10.3233/THC-161221
Sudjalim, T.R.; Woods, M.G.; Manton, D.J. Prevention of white spot lesions in orthodontic practice: a contemporary review. Aust. Dent. J. 2006, 51(4), 284-9. https://doi:10.1111/j.1834-7819.2006.tb00445
Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat Rev Dis Primers. 2017, 3, 17030. https://doi:10.1038/nrdp.2017.30
Jeong, S.H.; Jang, S.O.; Kim, K.N.; Kwon, H.K.; Park, Y.D.; KIM, B.I. Remineralization potential of new toothpaste containing NHA. Key Eng Mater 2006, 311(18), 537-540.
El-Wassefy, N.A. Remineralizing effect of cold plasma and/or bioglass on demineralized enamel. Dent Mater J. 2017, 36(2), 157-167. https://doi:10.4012/dmj.2016-219
Metelmann, H.R.; Von Woedtke, T.; Weltmann, K.D. Plasmamedizin: Kaltplasma in der Medizinischen Anwendung. Springer; Berlin/Heidelberg, Germany 2016, 12, 23-45.
Matsusaka, S. Control of particle charge by atmospheric pressure plasma jet (APPJ). A review. Adv. Powder Technol 2019, 30, 2851–2858.
Ranjan, R.; Krishnamraju, P.V.; Shankar, T.; Gowd, S. Nonthermal Plasma in Dentistry: An Update. J Int Soc Prev Community Dent. 2017, 7(3), 71-75. https://doi:10.4103/ jispcd.JISPCD2917
Masood, S.H.; Mohamed, S.A. Effect of plasma treatment on some surface properties of acrylic resin polymer. J Bagh Coll Dent. 2020, 32(2), 22-5. https://doi.org/10.26477/ jbcd.v32i2.2890.
Jungbauer, G.; Moser, D.; Müller, S.; Pfister, W.; Sculean, A.; Eick, S. The Antimicrobial Effect of Cold Atmospheric Plasma against Dental Pathogens-A Systematic Review of In-Vitro Studies. Antibiotics. 2021, 10(2), 211-223. https://DOI:10.3390/antibiotics10020211
Qanber, L.M.; Hamad, T.I. Effect of plasma treatment on the bond of soft denture liner to conventional and high impact acrylic denture materials. J Bagh Coll Dent. 2021, 33(3), 9-17. https://doi.org/10.26477/jbcd.v33i3.2948
Radacsi, N.; Van Der, Heijden, A.; Stankiewicz, A.; Ter Horst, J. Cold plasma synthesis of high-quality organic nanoparticles at atmospheric pressure. J Nano Reser. 2013, 15, 1-13. https://DOI:10.1007/s11051-013-1445-4
Cao, G.; Wang, Y. Nanostructures and nanomaterials. 2nd ed. New Jersey: World Scientific 2011, 23, 344-355.
Thomas, L.; Khasraghi, A. Nanotechnology-Based Topical Drug Delivery Systems for Management of Dandruff and Seborrheic Dermatitis: An overview. Iraqi J Pharm Sci. 2020, 29(1), 12-32. https://DOI:10.31351/vol29iss1pp12-32
Abdul Kareem, E.A.; Sultan, A.E.; Oraibi, H.M. Synthesis and characterization of silver nanoparticles: A review. Ibn AL-Haitham Journal for Pure and Applied Sciences. 2023, 36(3), 177–200. https://doi.org/10.30526/36.3.3050
Lutfi, R.B.; Jassim, W.H. Improvement of Dental Composite Resin Using Supra-Nano Chicken thigh Bone Fibers. Ibn AL-Haitham Journal for Pure and Applied Sciences. 2003, 36(2), 156–170. https://doi.org/10.30526/36.2.2998
Jaber, G.S.; khashan, K.; Abbas, M.J. Enhancement of Antibacterial and Mechanical Features of Glass Ionomer Restoration by Adding ZnO Nanoparticles Prepared by PLAL: In Vitro Study. Research Square. 2021, 23, 123. https://DOI:10.21203/rs.3.rs-284225/v1
Hussein, H.A.; Al-Judy, H.J. Effect of Incorporation of Boron Nitride Nanoparticles on Impact Strength and Surface Roughness of Heat Cure Poly Methyl Methacrylate Resin: An In Vitro Study. Dent Hypotheses. 2023, 14, 19-21. https://DOI:10.4103/denthyp.denthyp.14022
Talib, M.A.; Ali, B.G.; Al-Rubaee, E.A.; Mahdy, M. The Effect of titanium dioxide nanoparticles on the activity of salivary peroxidase in Periodontitis Patients. J Bagh Coll Dent. 2023, 35(2), 10-9. https://doi.org/10.26477/jbcd.v35i2.3393
Hassan, N.M.; Jafar, Z.J.; Abdul-Latif, M.H. Nano-hydroxyapatite preparation for the remineralization of primary tooth enamel surface subjected to liquid medication: An observational study. Health Sci Rep. 2023, 6(4), e1188. https://doi:10.1002/hsr2.1188
Luaibi, N.M.; Mohammed, R.A. Physiological and Hormonal Effects of Titanium Dioxide Nanoparticles on Thyroid and Kidney Functions. Baghdad Sci. J. 2023, 20(3), 0767. https://doi.org/10.21123/bsj.2022.3727
Nugroho, A.; Kusumorini, N.; Pramono, S.; Martien, R. An update on Nanoparticle Formulation Design of Piperine to Improve its Oral bioavailability: A Review. Iraqi J Pharm Sci. 2013, 32(1), 14-30. https://DOI:10.31351/vol32iss1pp14-30
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007, 32, 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
Vîrlan, M.J.; Miricescu, D.; Totan, A.R.; Greabu, M.; Tanase, C.; Sabliov, C.M.; Caruntu, C.F.; Calenic, B. Current Uses of Poly (lactic-co-glycolic acid) in the Dental Field: A Comprehensive Review. Journal of Chemistry 2015, 23, 1-12. https://DOI:10.1155/2015 /525832
Mäkinen, K.K. Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent. 2010, 12, 981072. https://doi:10.1155/2010/981072
Miake, Y.; Saeki, Y.; Takahashi, M.; Yanagisawa, T. Remineralization effects of xylitol on demineralized enamel. Journal of Electron Microscopy 2003, 52(5), 471-476. https:// DOI:10.1093/jmicro/52.5.471
Anjum, A.; Pooi, Y.C. PLGA/xylitol nanoparticles enhance antibiofilm activity via penetration into biofilm extracellular polymeric substances. RSC Adv. 2019, 9(25), 14198-14208. https://doi:10.1039/c9ra00125e
Bhattacharya, S. Development of 5-FU Loaded Poly Lactic-Co-Glycolic Acid Nanoparticles for Treatment of Lung Cancer. Iraqi J Pharm Sci. 2022, 31(1), 130-143. https://doi. org/10.31351/vol31iss1pp130-143
Rehder, F.C.; Maeda, F.A.; Turssi, C.P.; Serra, M.C. Potential agents to control enamel caries-like lesions. J Dent. 2009, 37(10), 786-90. https://doi:10.1016/j.jdent.2009.06.008
Mahdi, R.H. Synthesis and Characterization of CNT-Iron Oxide Nanocomposite by Laser Ablation for Antimicrobial Applications, PhD thesis, Iraq 2016, 1-152.
Alyamani, A.; Lemine, O.M. FE-SEM Characterization of Some Nanomaterial. in V. Kazmiruk (ed.), Scanning Electron Microscopy, IntechOpen, London, 2012, 14, 34-45. https://DOI:10.5772/34361.12221
Al-Sayyab, M. The potential effect of combined CO2 laser and fluoride on acid resistance of human dental enamel and root surfaces, An in vitro study. Ph.D. thesis, Iraq 2000, 24-56.
Featherstone, J.D.; Prevention and reversal of dental caries: role of low-level fluoride. Community Dent Oral Epidemiol. 1999, 27(1), 31-40. https://Doi:10.1111/j.1600-0528. 1999.tb01989.x.
Gelhard, T.B.; Ten Cate, J.M.; Arends, J. Rehardening of artificial enamel lesions in vivo. Caries Res. 1979, 13(2), 80-113. https://doi:10.1159/000260387
Gong, P. Polytechnic Institute of New York, Brooklyn, New York, USA, ICDD Grant-in-aid, 1981, 1221.
Kim, W.J.; Lee, S.W.; Sohn, Y. Metallic Sn spheres and SnO2C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles. Sci Rep. 2015, 24(5), 13448. https://doi:10.1038/srep13448.
Li, X.; Wang, J.; Joiner, A.; Chang, J. The remineralization of enamel: a review of the literature. J Dent. 2014, 42(1), 12-20. https://doi:10.1016/S0300-5712(14)50003-6
Šantak, V.; Vesel, A. Dental Tissues with Atmospheric Pressure Plasma Jet. Plasma Chemistry and Plasma Processing. 2017, 37(2), 401–413. https://DOI:10.1007/s11090-016-9777-3
Khoubrouypak, Z.; Abbasi, M.; Ahmadi, E.; Rafeie, N.; Behroozibakhsh, M. Effect of Cold Atmospheric Pressure Plasma Coupled with Resin-Containing and Xylitol-Containing Fluoride Varnishes on Enamel Erosion. Int J Dent. 2021, 23, 3298515. https://doi:10.1155/2021/3298515.
Jiménez-Gayosso, S.I.; Lara-Carrillo, E.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Medina Solís, C.E.; Velázquez-Enríquez, U.; Herrera-Serna, B. Remineralizing effect of xylitol, Juniperus communis and camellia sinensis added to a toothpaste: An in vitro study. Odovtos-International Journal of Dental Sciences 2020, 22(1), 71–79. https://DOI: 10.15517/ijds.v0i0.34573
Siqueira, V.L.; Barreto, G.S.; Silva, E.B. Effect of xylitol varnishes on enamel remineralization of immature teeth: in vitro and situ studies. Brazilian Oral Research 2021, 35, 137. https://DOI:10.1590/1807-3107bor-2021.vol35.0137
Desai, H.; Yadav, P.; Agrawal, S., Patel K.; Oza, M.; Kadivar, M. Effect of application of remineralization agents on microhardness & surface roughness of the enamel surface after interproximal stripping. in vivo study. International Journal of Advanced Research 2018, 6(6), 922-931. https://DOI:10.21474/IJAR01/7294
Fan, W.; Li, Y., Liu, D.; Sun Q.; Duan, M.; Fan, B. PLGA submicron particles containing chlorhexidine, calcium and phosphorus inhibit Enterococcus faecalis infection and improve the microhardness of dentin. J Mater Sci Mater Med. 2019, 30(2), 1-11. https://doi:10.1007/s10856-018-6216-4
Stancampiano, A.; Forgione, D.; Simoncelli, E.; Laurita, R.; Tonini, R.; Gherardi, M.; Colombo, V. The Effect of Cold Atmospheric Plasma (CAP) Treatment at the Adhesive-Root Dentin Interface. J Adhes Dent. 2019, 21(3), 229-237. https://doi:10.3290/j.jad.a42521
Stasic, J.N.; Selaković, N.; Puač, N.; Miletić, M.; Malović, G.; Petrović, Z.L.; Veljovic D.N.; Miletic, V. Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives. Clin Oral Investing 2019, 23(3), 1383-1396. https://doi:10.1007/s00784-018-2563-2
Fathollah, S.; Abbasi, H.; Akhoundi, S.; Naeimabadi, A.; Emamjome, S. Cold plasma enamel surface treatment to increase fluoride varnish uptake. Sci Rep. 2022, 12(1), 4657. https://doi:10.1038/s41598-022-08069-4