Genotyping and Beta–Lactamase Production of Escherichia coli Isolated from Different Sources

Authors

DOI:

https://doi.org/10.30526/38.2.3744

Keywords:

Escherichia coli, beta-lactamase, Genotyping, Double Disk Synergy Test

Abstract

It was collected 145 samples from a variety of clinical sources, including urinary tract infections, wounds, blood, respiratory tract infections, stool, sputum, and high vaginal swabs, from various hospitals in Baghdad. Following the collection, we conducted microscopic examinations, biochemical examinations, and diagnosis. The Vitek-2 Compact System conducted the final analysis. It was gotten 50 isolates of Escherichia coli, and 34% of those were from urinary tract infections, wounds, respiratory system infections, sputum, and vaginal swabs. 72% of the isolates were from urinary tract infections, 14% were from wounds, and 2% were from respiratory system infections. Next, we conducted genotyping and tested for beta-lactamase resistance. It was genotyped bacterial isolates using the ERICPCR technique to understand their genetic relationships. The results showed three different patterns. We obtained (E19, E42, E50, E75) from each type, which consists of a group of isolates genetically related to each other on the genetic tree. We found genetic relatedness in isolates (E13, E140, E54, E30, E120, E60) that showed no genetic relatedness (E36, E38). Phenotypical detection revealed the presence of Extended-Spectrum B-Lactamase (ESBLS) beta-lactamase. The Double Disk Synergy Test (DDST) results revealed that E36, E13, E38, E120, and E60, with a percentage of 41.7%, possessed the ability to produce beta-lactamase, while E42, E50, E19, E30, E75, E140, and E54, with a percentage of 58.3%, lacked this ability.

Author Biographies

  • Saja Mohammed Mahmood, Department of Biology, College of Education for Pure Science (Ibn Al-Haitham) , University of Baghdad, Baghdad, Iraq.

    Department of Biology, College of Education for Pure Science (Ibn Al-Haitham) , University of Baghdad, Baghdad, Iraq.

  • Suaad Khalil Ibrahim, Department of Biology, College of Education for Pure Science (Ibn Al-Haitham) , University of Baghdad, Baghdad, Iraq.

    Department of Biology, College of Education for Pure Science (Ibn Al-Haitham) , University of Baghdad, Baghdad, Iraq.

References

1. Khudhir ZS. The synergistic effects of Lactobacillus acidophilus ROO52 and Lactobacillus bulgaricus LB-12 bacteriocins against E. coli O157:H7 in milk. Iraqi J Vet Med. 2014;38(2):35-40. https://doi.org/10.30539/iraqijvm.v38i2.220.

2. Abdulridha RN, Ibrahim OMS. Activity of bacterial antibiotics against some pathogenic bacteria isolated from calves diarrhea in Baghdad (Part I). Iraqi J Agric Sci. 2018;49(5):847-854. https://doi.org/10.36103/ijas.v49i5.45.

3. De Sousa CP. Escherichia coli as a specialized bacterial pathogen. Rev Biolcienc Terra. 2006;2(2):341-352.

4. Al-Rekaby SM, Al-Wendawi SA. In vitro evaluation of inhibitory activity of enteric Bifidobacterium isolates against shiga toxin-producing E. coli (STEC) 175:H7. Iraqi J Sci. 2014;55(3A):999-1005. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/11370.

5. Mustafa TNH, Mohammed ZA. Correlation between the prevalence of E. coli O157:H7 and the physicochemical characteristics of the soil on dairy farms reared under field conditions in Baghdad province. Iraqi J Vet Med. 2014;38(2):55-65. https://doi.org/10.30539/iraqijvm.v38i2.224.

6. Ibrahim SK, Banno IS, Abdella SM. Effect of Citrus aurantifolia seed extracts on some bacteria isolated from burn infections. Baghdad Sci J. 2014;11(2):773-780. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2691.

7. Al-Rudha AMH, Al-Rubaia EM, Khalil NK. Distribution of E.coli O157:H7 in fecal and urine samples of cattle. Iraqi J Vet Med. 2016;40(1):79-82. https://doi.org/10.30539/iraqijvm.v40i1.142.

8. Khudhir ZS. Evaluation of the antibacterial activity of brine, nisin solution, and ozonated water against E. coli O157:H7 in experimentally produced soft cheese. Iraqi J Vet Med. 2021;4(1):17-21. https://doi.org/10.30539/ijvm.v45i1.1035.

9. Olowe BM, Oluyege JO, Famurewa O, Ogunniran AO, Adelegan O. Molecular identification of Escherichia coli and new emerging enteropathogen, Escherichia fergusonii, from drinking water sources in Ado-Ekiti, Ekiti State, Nigeria. J Microbiol Res. 2017;7(3):45-54. http://dx.doi.org/10.5923/j.microbiology.20170703.01.

10. Alice KM, Al-Aubydi MA. Extraction and partial purification of adhesive protein FimH from type-1 pili isolated from uropathogenic E. coli. Baghdad Sci J. 2009;6(4):1-7. https://doi.org/10.21123/bsj.2010.11911.

11. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012;2012:e681473. https://doi.org/10.1155/2012/681473.

12. Al-Karawi NJ, Al-Awade AR. Molecular identification of Escherichia coli virulence gene. Biochem Cell Arch. 2019;19(2):3153-3157. http://dx.doi.org/10.35124/bca.2019.19.2.3153.

13. Ebraheem AA, Alwendawi SA. Screening for in vitro biofilm formation ability of locally isolated uropathogenic Escherichia coli (UPEC). Iraqi J Sci. 2015;56(2B):1310-1314. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/10081.

14. Kibret M, Abera B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr Health Sci. 2011;11(3):40-45. https://doi.org/10.4314/ahs.v11i3.70069.

15. Roof MAJ, Fayidh MA. Investigation of biofilm formation efficiency in ESβLs of pathogenic Escherichia coli isolates. Int J Drug Deliv Technol. 2022;12(2):696-700. http://dx.doi.org/10.25258/ijddt.12.2.41.

16. Ageorges V, Monteiro R, Leroy S, Buress CM, Pizza M, Durand FC, Desvaux M. Molecular determinants of surface colonization in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev. 2020;44(3):314-350. https://doi.org/10.1093/femsre/fuaa008.

17. Ballen V, Capas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: From biofilm formation to new antibiofilm strategies. Microorganisms. 2022;10(6):1103. https://doi.org/10.3390/microorganisms10061103.

18. Sah SK, Hemalatha S. Extended spectrum beta-lactamase (ESBL) mechanism of antibiotic resistance and epidemiology. Inter J Pharm Res Int. 2015;7(2):303-309. https://doi.org/xxxxx

19. Roof MAJ, Fayidh MA. Molecular study to detect blaTEM and blaCTX-M genes in ESβL Escherichia coli and their antimicrobial resistance profile. J Phys Conf Ser. 2021;1879:1-9. https://iopscience.iop.org/article/10.1088/1742-6596/1879/2/022051.

20. Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HLT, Donnenberg MS, Blattner FR. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA. 2002;99:17020-17024. https://doi.org/10.1073/pnas.252529799.

21. Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Rev Microbiol. 2021;19:37-54. https://doi.org/10.1038/s41579-020-0416-x.

22. Ruiz N, Silhavy TS. How Escherichia coli became the flagship bacterium of molecular biology. J Bacteriol. 2022;204(9):e0023022. https://doi.org/10.1128/jb.00230-22.

23. Mahdi AA. Detection of some antibiotic resistance genes and their gene expression In Acinetobacter baumannii isolated from different clinical cases. MSc. thesis, University of Baghdad, College of Education for Pure Science; 2019.

24. Mohamad LS. The Effect of Alcoholic Extracts of Zingiber officinale Anti-E. coli Isolates Isolated from Urinary Tract Infection. Iraqi J Sci. 2019;60(10):2136-40. https://doi.org/10.24996/ijs.2019.60.10.5.

25. Hamady DR, Ibrahim SK. The study on ability of Escherichia coli isolated from different clinical cases to biofilm formation and detection of csgD gene responsible for produce curli (fimbriae). Biochem Cell Arch. 2020;20(2):5553-7. https://connectjournals.com/03896.2020.20.5553.

26. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press; 1989.

27. Jure MA, Aulet O, Trejo A, Castillo M. Extended-spectrum β-lactamase-producing Salmonella enterica serovar Oranienburg (CTX-M2 group) in a pediatric hospital in Tucumán, Argentina. Rev Soc Bras Med Trop. 2010;43:121-4. https://doi.org/10.1590/s0037-86822010000200003.

28. Al-Badry DRH. Molecular bacteriological study of the mixed effect of acetic and antibiotic ceftazidime on clinical samples. MSc. thesis, University of Baghdad, College of Education for Pure Sciences/Ibn Al-Haitham; 2020.

29. Sadek MS, El-Sherbiny GM, Halim MM. Detection of blaSHV and blaCTX-M genes among the extended-spectrum β-lactamases (ESβLS) producing Enterobacteriaceae isolated from hospital-acquired infections and community in Egypt. AIMJ. 2021;7-14. https://doi.org/10.21608/aimj.2021.61624.1412.

30. Garba L, Chiroma NM, Justine J, Yusuf I, Inuwa AB, Idris A. Phenotypic detection of extended-spectrum β-lactamase-producing bacteria from selected hospital contact surfaces. JEMAT. 2020;18(1):32-6.

31. Ghonaim MM, Mostafa RM, Alkady A. Phenotypic and molecular characterization of aminoglycoside resistance in clinical Escherichia coli isolates from patients at Menoufia University Hospitals. Egypt J Med Microbiol. 2019;28(3):25-32. https://doi.org/10.21608/ejmm.2019.282956.

32. El-Masry E, Alruwaili FM, Taha AE, Saad AE, Taher IA. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae among clinical isolates in Turaif General Hospital, Northern Borders-Saudi Arabia. J Infect Dev Ctries. 2023;17(4):477-84. https://doi.org/10.3855/jidc.17212.

33. Michael NS, Saadi AT. Extended spectrum of β-lactamase status in Escherichia coli isolated from urinary tract infections in Duhok City, Iraq. J Duhok Univ. 2019;21(2):27-33.

34. Raoof MA. Phenotypic and molecular study of Escherichia coli producing extended-spectrum β-lactamase enzymes. MSc. thesis, University of Baghdad, College of Education for Pure Sciences/Ibn Al-Haitham; 2021.

35. Bajaj P, Singh NS, Virdi JS. Escherichia coli β-lactamases: What really matters. Front Microbiol. 2016;7:417. https://doi.org/10.3389/fmicb.2016.00417.

36. Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247. https://doi.org/10.1101/cshperspect.a025247.

37. Sadeghi M, Sedigh H, Saraie E, Mojtahedi A. Prevalence of ESBL and AmpC genes in E. coli isolates from urinary tract infections in the north of Iran. New Microbes New Infect. 2021;45:2-6. https://doi.org/10.1016/j.nmni.2021.100947.

38. Ahmed RZT. Phenotypic and genetic study of some virulence factors of Acinetobacter baumannii isolated from different clinical cases. MSc.thesis, University of Baghdad, College of Education for Pure Sciences (Ibn Al-Haitham); 2017.

39. Mahmoud AT, Ibrahem RA, Salim MT, Gabr A, Halby HM. Prevalence of some virulence factors and genotyping of hospital-acquired uropathogenic Escherichia coli isolates recovered from cancer patients. J Glob Antimicrob Resist. 2020;23:211-6. https://doi.org/10.1016/j.jgar.2020.08.003.

40. Elmonir W, Shalaan S, Tahoun A. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog. 2021;13(8). https://doi.org/10.1186/s13099-021-00402-y.

41. Movahedi M, Zarei O, Hazhirkamal M, Karami P, Shokoohizadeh L, Taheri M. Molecular typing of Escherichia coli strains isolated from urinary tract infection by ERIC-PCR. Gene Rep. 2021;23:101058. https://doi.org/10.1016/j.genrep.2021.101058.

42. Alsultan A, Elhadi N. Evaluation of ERIC-PCR method for determining genetic diversity among Escherichia coli isolated from human and retail imported frozen shrimp and beef. Food Contam. 2022;9:12. https://doi.org/10.1186/s40550-022-00098-1.

43. Alttai NA, Al-Sanjary RA, Sheet OH. Genetic diversity of Escherichia coli harboring virulence genes Stx1 and Stx2 isolated from common carp fish in Nineveh Governorate using ERIC-PCR. Iraqi J Vet Sci. 2023;37(3):701-5. https://doi.org/10.33899/ijvs.2023.137140.2642.

44. Al-Azzawi SNA, Ahmed RZT, Hadi TF. Genotyping of Escherichia coli isolated from urinary tract infections using ERIC method. BNIHS. 2022;140(1):1343-92. https://doi.org/10.33899/ijvs.2023.137140.2642.

45. Beltrão EMB, de Oliveira ÉM, Scavuzzi AML, Firmo EF, Lopes ACD. Virulence factors of Proteus mirabilis clinical isolates carrying blaKPC-2 and blaNDM-1 and first report blaOXA-10 in Brazil. J Infect Chemother. 2022;28(3):363-72. https://doi.org/10.1016/j.jiac.2021.11.001.

Downloads

Published

20-Apr-2025

Issue

Section

Biology

How to Cite

[1]
Mohammed Mahmood, S. and Khalil Ibrahim, S. 2025. Genotyping and Beta–Lactamase Production of Escherichia coli Isolated from Different Sources. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 63–73. DOI:https://doi.org/10.30526/38.2.3744.