Effect of Adding Al2O3 on Some Physical Properties of the Ceramic Compound

Main Article Content

Shatha Hashim Mahdi
Saad.K.A
Ulvi Kanbur

Abstract

Zerlokh bentonite is the main material for preparing ceramic specimens with Al2O3 additions. X-ray diffraction analyses were carried out on the raw material at room temperature. The specimens of additions that could stand up to 1250 ºC are stable. That is shown by analyzing the X-ray diffraction pattern after heat treatment of the specimens. The growth of new phases like cordierite, anorthite, and cristobalite has the highest percentage ratio of cordierite (76.43%) and mullite (40.28%). So the presence of refractory materials in the obtained samples strongly supports the possibility of using bentonite with additions in the ceramics industry for high temperatures. Therefore, it gave distinct physical and thermal structural properties to the new product. The apparent porosity (A.P.) presented decreases with increasing ratios, and the lowest value for the ratio at 1.5% equals 1%. In studying the thermal conductivity coefficient, the thermal conductivity coefficient increased due to a decrease in ratios. The best values for the thermal conductivity coefficient at 1.5% were (0.045 W/m. °C).

Article Details

How to Cite
[1]
Mahdi, S.H. et al. 2024. Effect of Adding Al2O3 on Some Physical Properties of the Ceramic Compound. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 197–206. DOI:https://doi.org/10.30526/37.4.3755.
Section
Physics

Publication Dates

Received

2023-09-30

Accepted

2023-12-04

Published Online First

2024-10-20

References

Kareem, A.J.; Mohammed, A.T.; Ebtisam, M.T.; Shatha, H.M. Study characteristics of (epoxy–bentonite doped) composite materials. Energy Procedia 2017, 119, 670-679. https://doi.org/10.1016/j.egypro.2017.07.094

Maryam, M. Bentonite Clay As A Natural Remedy. A Brief Review Iran J Public Health 2017, 46(9), 1176-1183. https://doi.org/j.1029026782/100.23

Tole, I.; Habermehl, K.; Cwirzen, A. Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders. review, Mineral. Mineralogy and Petrology 2019, 113, 449-462. https://doi.org/10.1007/s00710-019-00666-y

Athraa, N.A.; Shatha, H.M. The effect of heat treatment on structure property of (Bentonite-Alumina-Silica) Ceramic. J. Phys.: Conf. Ser. 2021, 1879, 032119. https://doi:10.1088/1742-6596/1879/3/032119

Shatha, H.M.; Ahmed, F.M.; Mohammad, H.M. Effect of gamma radiation on Structural characteristic of Ceramic body, Mesop. environ. j. Special Issue C 2017, 87-90.

Ahmed, Z. K.; Özlem C.; Yiannis, P.; Andrew, H.; Pascaline, P.; Susan, A.; Bernal, A.; Marsh, T.M. Advances in alkali-activation of clay minerals. Cement and Concrete Research 2020, 132, 106050. https://doi.org/10.1016 /j.cemconres.2020.106050

Zhang, W.W.; Yunliang, Z.; Haoyu, B.; Tong, W.; Shichang, K.; Guangsen, S.; Sridhar, K. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chemical Engineering Journal 2021, 420(2), 15, 127574. https://doi.org/10. 1016/j.cej.2020.127574

Uma, S.M.; Muthukumar, M. Comprehensive review of geosynthetic clay liner and compacted clay liner, IOP Conf. Series: Materials Science and Engineering 2017, 263, 032026. https://doi:10.1088/1757-899X/263/3/032026

Aref, A.; Hongping, H.; Jianxi, Z.; Yunfei, Xi.; Runliang, Z.; Lingya, M.; Qi, T. Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms Appl. Clay Sci. 2018, 159, 83-93. https://doi.org/10.1016/j.clay.2017.11.007

Lenz, F.; Birkenstock, J.; Fischer, L.A.; Schneider, H.; Fischer, R.X. Mullite-2c – a natural polytype of mullite. European Journal of Mineralogy 2020, 32, 235-249. https://doi. org/10.5194/ejm-32-235-2020

Szuszkiewicz Astm, C. R23 Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware. Appl. Phys. 2018, 21(2), 23-34.

Astm, C. Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. Appl. Phys. 2022, 11(12), 43-64.

Neamah, Z.J.; Mahdi, S.H.; Effect of zirconia addition on thermal and mechanical properties of poly-methyl methacrylate composites. Digest Journal of Nanomaterials and Biostructures 2023, 18, 927-932. https://doi.org/10. 15251/DJNB.2023.183.927

Lazaratou, C.V.; Vayenas, D.V.; Papoulis, D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review Applied Clay Science 2020 185, 105377. https://doi.org/10.1016/j.clay. 2019.105377

Ken, L. X-ray Diffraction, A program to analyze energy and angular dispersive, X-ray diffraction patterns. Appl. Phys. 1992, 5(2), 45-56.

Astm, A. International Center for Diffraction Data, FileTM & Related Products. Jour. Phys. 2009, 2(11), 33-45.

Yasushi, S.; Norihiko, K. Quantitative Analysis Of Tridymite And Cristobalite Crystallized In Rice Husk Ash By Heating. Industrial Health 2004, 42, 277–285

Laurence N.W. Recommended abbreviations for the names of clay minerals and associated phases, Clay Minerals 2020, 55, 261–264. https://doi:10.1180/clm.2020.30

Lenz, S.; Birkenstock, J.; Fischer, L.A.; Schüller, W.; Schneider, H.; Fischer, R.X. Natural mullites: chemical composition, crystal structure, and optical properties. Eur. J. Mineral. 2019, 31, 353–367, https://doi.org/10.1127/ejm/2019/0031-2812

Igami, Y.; Ohi, S.; Kogiso, T.; Furukawa, N.; Miyake, A. High-temperature structural change and microtexture formation of sillimanite and its phase relation with mullite, American Mineralogist: Journal of Earth and Planetary Materials 2019, 104(7), 1051-1061. https://doi.org/10.2138/am-2019-6732

Szuszkiewicz, A.; Pieczka, A.; Gadas., P.; Vašinová, M.; Szełęg, E.; Gołębiowska, B.; Galusková, D. First occurrence of Mn-dominant cordierite-group mineral: Electron microprobe and laser ablation ICP-MS study. The Canadian Mineralogist, 2019, 57, 807-810.‏

Zdeněk, K.; Marta, V.; Lucie, B.; Petra, M. Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic. Minerals 2020, 10(12), 122. https://doi.org/10.3390/ min10121122

Valášková, M.; Klika, Z.; Novosad, B.; Smetana, B. Crystallization and quantification of crystalline and non-crystalline phases in kaolin-based cordierites. Materials 2019, 12(19), 3104

Jin, S.; Xu, H.; Wang, X.; Jacobs, R.; Morgan, D. The incommensurately modulated structures of low-temperature labradorite feldspars: a single-crystal X-ray and neutron diffraction study. Acta Crystallographica 2020, 76, 93-107.

Götz, E.; Kleebe, H.; Kolb, U. The hierarchical internal structure of labradorite, European Journal of Mineralogy 2022, 34, 393-410.

Sokol’skii, V.E.; pruttskov, D.V.; yakovenko, O.M.; Kazimirov, V.P.; Roik, O.S.; Golovataya, N.V.; Sokolsky. G.V. X-rayDiffraction Study Of Structure Of CaO- Al2O3-SiO2 Ternary Compounds In Molten And Crystalline State J. Min. Metall. Sect. B-Metall 2020, 56, 269 – 277. https://doi.org/10.2298/JMMB190806016S

Shigeru, S. Characterization of Formation of Ferrous and Ferric Oxides in Aqueous Solution from a Multidisciplinary Viewpoint. ISIJ International 2022 , 62 , 800-810. https://doi.org/10.2355/ isijinternational ISIJINT-2021-027

Kamil, G.G. Diversity of Iron Oxides: Mechanisms of Formation, Physical Properties and Applications. Magnetochemistry 2023, 9, 119. https://doi.org/10.3390/magnetoch emistry9050119

Ezzat, A.E.; Anwar, S.A.; Mobarak, H.A.; Doreya, M.I. Rheological, physico-mechanical and microstructural properties of porous mullite ceramic based on environmental wastes. Boletín de la Sociedad Española de Cerámica y Vidrio 2022, 61, 121-129. https://doi.org/10.1016/j.bsecv. 2020.08.002

Pia, G.; Casnedi, L.; Sanna, U. Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: experimental findings and model. predictions Ceram Int. 2016, 42, 5802-5809. https://doi.org/10.1016/j.ceramint.2015.12.122

AbdoulRazac, S.; Doan, P.; Nawal. S.; Rachid, B.; Claudia, T.; Alain, G.; Ange, N. Clay/phosphate-based ceramic materials for thermal energy storage – Part I: Effect of synthetic phosphate content on microstructure, thermo-physical and thermo-mechanical properties. Open Ceramics 2023, 14, 100346. https://doi.org/10.1016/j.oceram. 2023.100346.