The Effect of Palm Fronds Waste Ash Particulate on the Mechanical, Thermal and Acoustic Insulation Features of Polymeric Composites

Main Article Content

Zainab Ahmed
Adil I. Kadim
Mahbubur M. Rahman

Abstract

We have used Palm frond base Ash Waste Particles as a natural, safe, and non-toxic reinforcing material to enhance and improve the characteristics of the epoxy polymer matrix. We utilized Palm frond base Ash Waste Particles as a natural, safe, and non-toxic reinforcing material to enhance the characteristics of the epoxy matrix. Ash Waste Particles were used in weight fractions of 0, 2.5, 5, 7.5, and 10%. The outcomes showed that the process of reinforcing with Ash Waste Particles increased the tensile strength from 8.782 MPa to 23.253 MPa. Additionally, the hardness value increased from 58.875 (Shore D.) to 74 (Shore D.). For the pure sample, the thermal conductivity has decreased to 0.135 Wm-1 0C-1 from 0.158 Wm-1 0C-1 . The transferred acoustic energy from side to side of the specimens (Acoustic Insulation Character) has reduced from 103.3 to 94.7 W⁄ m2 s. Finally, at the 10% weight fraction, the specimen's density value decreased from 1.557 to 1.208 g/cm3.

Article Details

How to Cite
[1]
Ahmed, Z. et al. 2024. The Effect of Palm Fronds Waste Ash Particulate on the Mechanical, Thermal and Acoustic Insulation Features of Polymeric Composites. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 236–246. DOI:https://doi.org/10.30526/37.4.3816.
Section
Physics

Publication Dates

Received

2023-11-07

Accepted

2024-01-08

Published Online First

2024-10-20

References

Israa, M.R.; Yousif, I.M.; Takialdin, A.H;. Interactions Investigation of New Composite Material Formed from Bauxite and Melamine-Urea Formaldehyde Copolymer. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 2016, 29(1), 181–192. https://doi.edu.iq/index.php/j/article/view/57

Mingye, W.L.; Ma, B.L.; Wenjian, Z.; Hao, Z.; Guangshun, W.; Yudong, H.; Guojun, S. One-step generation of silica particles onto graphene oxide sheets for superior mechanical properties of epoxy composite and scale application. Composites Communications 2020, 22, 1–7. https://doi.10.science /article/abs/pii/S2452213920302424.

Xiaomin, Y.; Bo, Z.; Xun, C.; Jianjun, L.; Kun, Q.; Junwei, Yu. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent. Journal of Applied Polymer Science 2017, 134(17), 1–11, https://doi:10.1002/app.44757.10.1002.

Adil, I.K.; Dhefaf, H.B.; Zainab, S.A. The Effect Of Phoenix Dactylifera L. Pinnae Reinforcement On The Mechanical And Thermal Properties Of Polymer Composite. Journal of the college of basic education 2019, 104(25), 339–349. https://doi:index.php/cbej/article/view/4654.

Radhika, W.; Niharika, T.; Ashok, M.R. Mechanical and curing behavior of epoxy composites reinforced with polystyrene-graphene oxide (PS-GO) core-shell particles. Composites Part C: Open Access 2021, 5, November, 1–13, https://doi:10.1016/j.jcomc.2021.100128.

Zhaofu, W.; Rong, Qi.; Jin, W.; Shuhua, Q. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceramics International 2015, 41, 13541–13546. https://doi:10. 1016/j.ceramint.2015.07.148.

Sravanthi, K.; Mahesh, V.; Rao, B.N. Influence of carbon Particle in Polymer matrix composite over mechanical Properties and tribology behavior. Arch. Metall. Mater 2019, 66(4), 1171–1178. https://doi.bibliotekanauki.pl/articles/2049147.

Abdulhameed, R.A. Study on adhesion wear damage done on the hybrid composite Novolac under the experimental variables. Energy Procedia 2019, 157(1), 644–654. https://doi.10. S1876610218311998.

Mustafa, B.H.; Salah, N.A.; Qabas, R. An Investigation of Tensile and Thermal Properties of Epoxy Polymer Modified by Activated Carbon Particle. IOP Conference Series: Materials Science and Engineering 2021, 1094, 1, 1–9, https://doi:10.1088/1757-899x/1094/1/012164.

Nuo, X.; Chunrui, L.; Ting, Z.; SiQiu, Y.; Liu, D.Z.; Dingshu, X.; Guocong, L. Enhanced mechanical properties of carbon fiber/epoxy composites via in situ coating-carbonization of micron-sized sucrose particles on the fiber surface. Materials and Design 2021, 200, 1–10, https://doi:10.1016 /j.matdes. 2021.109458.

Muhammad, M.R.; Khubab, S.; Yasir, N. Effect of PEEK Particles on Physiomechanical Behavior of Carbon/Epoxy Composite. International Journal of Polymer Science 2022, 22, 1–12, https:// doi:10.1155/2022/8161684.

Wafaa, A.; Abdelhamid, R.A. Studying the possibility of extending the lifespan of paper documents and archives using the polymer coating method. AIP Conference Proceedings 2019, 12, 12-23. https://doi.org/10.1063/1.5116962.

Mohamad, R.A.; Meenakshi, R.R.; Jayaprakash, V.; Venkata, M.R.; Vaidhegi, K.; Simon, Y. Optimization on the Mechanical Properties of Aluminium 8079 Composite Materials Reinforced with PSA. Advances in Materials Science and Engineering 2022, 2, 23-35. https://doi/10.1155/2022 /6328781.

Huda, R.K.; Adil, I.K. The effect of dates palm trunk particles as improvement reinforcement material of polymeric composites and sustainable environmental material. AIP Conference Proceedings 2019, 2, 34-45. https://doi/article/2123/1/020095/700644.

Shao-Yun, F.; Xi-Qiao, F.; Bernd, L.; Yiu-Wing, M. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B: Engineering 2008, 39(6), 933–961. https://doi/pii/S135983680800005X.

Alam, M.K.; Islam, M.T.; Mina, M.F.; Gafur, M.A. Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. Journal of Applied Polymer Science 2014, 131(3), 1–11. https://doi:10.1002. 23444/app.40421.

Turssi, C.P.; Ferracane, J.L.; Vogel, K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 2005, 26(24), 4932–4937. https://doi:10.1016/j.1233/22s.

Allana, A.d.N.; Fernando, F.; Fábio, S.D.; Evans, P.C.F.; José, D.D.M.; Ana, P.C.B. Addition of poly (ethylene-co-methacrylic acid) (EMAA) as self-healing agent to carbon-epoxy composites. Composites. Part A: Applied Science and Manufacturing 2020, 137, 1–8, https://doi:10.1016/ j.compositesa.2020.106016.

Amélie, V.; Hiroki, K.; Akira, K.; Yongfeng, L.; Jean-Marc, H. Aluminium/Carbon composites materials fabricated by the powder metallurgy process. Materials 2019, 12(24), https://doi:10.3390/ma12244030.

Raya, A.A.; Abdulhameed, R.A.; Mohammed, A. Preparation and study the tribology properties for (epoxy resins/wood minutes (Reed) composite. AIP Conference Proceedings 2019, 21, 90-101. https://doi.org/10.1063/1.5138574.

Afya, Q.F.; Widad, H.J. Fabrication of Natural Gelcoats (Epoxy/ Pumpkin Peels Fibers) Composites with High Mechanical and Thermal Properties. Ibn Al-Haitham Journal for Pure and Applied Sciences 2022, 35(4), 21–36. https://doi/index.php/j/article/view/2876.

Dahlang, T.; Syarifuddin, L.; Fahrul, B. Molecular and structural properties of polymer composites filled with activated charcoal particles. AIP Conference Proceedings 2016, 17, 19-23. https://doi /10.1063/1.4943719/13062898/030024.

Omar, A.J.; Abdulhameed, R.A. Study the tribology properties of (polyester/epoxy blend) composite reinforced by nanomaterials. AIP Conference Proceedings 2019, 21, 23-34. https://doi.org/10.1063 /1.5116961.

Aveen, A.J.; Widad, H.J. Preparation of Polyester/ Micro Eggshell Fillers Composite as Natural Surface Coating. Ibn Al-Haitham Journal for Pure and Applied Sciences 2023, 36(1), 88–99. https://doi/1244/index.php/j/article/view/2889.

Levin, K.I.; Jensen, M.; Jensen, A.C.; Koponen, K.A. Size-resolved characterization of particles and fibers released during abrasion of fiber-reinforced composite in a workplace influenced by ambient background sources. Aerosol and Air Quality Research 2016, 16(1), 11–24. https://doi.org/10.4209/aaqr.2015.05.0295.

Shihab, A.Z.; Amani, Z.M. Study the Electromechanical Strength Properties for Epoxy Dispersed Silica Powder Composite. Ibn Al-Haitham J. for Pure & Appl. Sci. 2017, 30(1), 34-46. https://doi/23/index.php/j/article/view/1083.

Li, H.H.; Xiaoxiang, Y.; Jianhong, G. Study on microstructure effect of carbon black particles in filled rubber composites. International Journal of Polymer Science 2018, 22(2), 34-45. https://doi.org/10.1155/2018/2713291.

Maria, M.K.; Irini, D.S. Synthesis and study of properties of dental resin composites with different nano silica particle size. Dental Materials 2011, 27(8), 825–835. https://doi:10.1016 /j.dental.2011.04.008.

Mehmet, B. Vibration analysis of carbon and Kevlar fiber reinforced composites containing SiC particles. Sakarya University Journal of Science 2018, 22(5), 1423-1431. https://doi/www. net/publication/327991147.

Akaluzia, R.O.; Edoziuno, F.O.; Adediran, A.A.; Odoni, B.U.; Edibo, S.; Olayanju, T.M.A. Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites. Materials Today: Proceedings 2021, 38, https://doi.org/10.1016/j.matpr.2020.02.980.

Oiane, R.d.A.; Núria, A.; Jordi, A.; Salvador, B. Improving Glass Transition Temperature and Toughness of Epoxy Adhesives by a Complex Room-Temperature Curing System by Changing the Stoichiometry. Polymers 2023, 15, 12-23. https://doi:10.3390/polym15020252.

Karthik, K.; Senthilkumar, P. Tribological characteristics of carbon-epoxy with ceramic particles composites for centrifugal pump bearing application. International Journal of ChemTech Research 2015, 8(6), 612–620. https://doi/.net/publication/282918125.

Rochele, P.; Gediminas, M.; Hamza, M.A.; Vladimir, S.; Daiva, Z. Mechanical properties of carbon fiber reinforced composites modified with star-shaped butyl methacrylate. Journal of Composite Materials 2022, 56(6), 951-959. https://doi.org/10.1177/00219983211065206.

Yılmazer, S.; Aras, U.; Kalaycıoğlu, H.; Temiz, A. Water Absorption, Thickness Swelling and Mechanical Properties of Cement Bonded Wood Composite Treated With Water Repellent. Maderas: Ciencia y Tecnologia 2023, 25(5), 1–10, https://doi:10.4067/S0718-221X2023000100434.