Variable Viscosity Impact on Peristaltic Transport of Hybrid Nanomaterial in Tapered Channel

Authors

DOI:

https://doi.org/10.30526/38.3.3897

Keywords:

Hybrid nanomaterial, Variable viscosity, Peristaltic transport, Tapered channel

Abstract

This present study focuses on the analysis of peristaltic transport involving hybrid nanomaterial fluid through a tapered channel. Peristalsis of hybrid nanomaterial with variable viscosity is studied here. Thermal heat and velocity  with no-slip conditions are considered in the investigation. In order to simplify governing equations small Reynolds number and large wavelength assumptions are used, the exact solution for formulation of stream function , axial velocity and temperature are determined based on the perturbationechnique . In the present study, water is used as a head liquid while nanoparticle contains polystyrene and grapheme oxid. Additionally, main purpose is to explain impacts of  various physical parameter and porosity parameter.  Here, we are concerned with studying the influences of heat transfer  and porous medium on MHD of hybrid nanomaterial which translates through a two, dimensional asymmetric, tapered, channel. Finally, the plot of expressions of velocity curve, temperature distribution and streamlines with trapping phenomena are obtained via Mathematica 11 software.

Author Biographies

  • Alaa Waleed Salih, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

    Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

  • Ahmed M. Abdulhadi, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

    Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

References

1. Shapiro A.H., Jaffrin M.Y., Weinberg S.L. Peristaltic pumping with long wavelength at low Reynolds number. J Fluid Mech 1969;37(4):799–825. https://doi.org/10.1017/S0022112069000899

2. Hayat T., Ali N. Effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Appl Math Model 2008;32:761–774. https://doi.org/10.1016/j.apm.2007.02.010

3. Das U.J. Effects of variable viscosity on hydromagnetic boundary layer along a continuously moving vertical plate in the presence of radiation and chemical reaction. J Electromagn Anal Appl 2013;5(1):5–9. https://doi.org/10.4236/jemaa.2013.51002

4. Prakash E., Siva P., Govindarajan A., Vidhya M. Influence of variable viscosity on peristaltic motion of a viscoelastic fluid in a tapered microfluidic vessel. Int J Eng Technol 2018;7(4.10):49–54. https://doi.org/10.14419/ijet.v7i4.10.20705

5. Kareem R.S., Abdulhadi A.M. Effect of MHD and porous media on nanofluid flow with heat transfer: numerical treatment. J Adv Res Fluid Mech Therm Sci 2019;63(2):317–328.

6. Hummady L.Z., Abbas I.T., Mohammed R.A. Inclined magnetic field of non-uniform and porous medium channel on couple stress peristaltic flow and application in medical treatment (knee arthritis). J Southwest Jiaotong Univ 2019;54(4). https://doi.org/10.35741/issn.0258-2724.54.4.35

7. Vaidya H., Rajashekhar C., Manjunatha G., Prasad K.V., Makinde O.D., Vajravelu K. Heat and mass transfer analysis of MHD peristaltic flow through a compliant porous channel with variable thermal conductivity. Phys Scr 2020. https://doi.org/10.1088/1402-4896/ab681a

8. Mohaisen H.N., Abdulhadi A.M. Effects of the rotation on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid in asymmetric channel. Iraqi J Sci 2022;63(3):1240–1257. https://doi.org/10.24996/ijs.2022.63.3.29

9. Saleem A., Salman A., Fahad M.A. Physical aspects of peristaltic flow of hybrid nanofluid inside a curved tube having ciliated wall. Results Phys 2020;19:103431. https://doi.org/10.1016/j.rinp.2020.103431

10. Mohammed G.G., Salih A.W. Impacts of porous medium on unsteady helical flows of generalized Oldroyd-B fluid with two infinite coaxial circular cylinders. Iraqi J Sci 2021;62(5):1686–1694. https://doi.org/10.24996/ijs.2021.62.5.31

11. Salih A.W., Habeeb S.B. Influence of rotation, variable viscosity and temperature on peristaltic transport in an asymmetric channel. Turk J Math 2021;12(6):1047–1059.

12. Ramesh K. Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium. Comput Methods Programs Biomed 2016;135:1–14. https://doi.org/10.1016/j.cmpb.2016.07.001

13. Awais M., Hayat T., Ali A., Irum S. Velocity, thermal and concentration slip effects on a magnetohydrodynamic nanofluid flow. Alex Eng J 2016;55:2107–2114. https://doi.org/10.1016/j.aej.2016.06.027

14. Nassief A.M., Abdulhadi A.M. Rotation and magnetic force effects on peristaltic transport of non-Newtonian fluid in a symmetric channel. Ibn Al-Haitham J Pure Appl Sci 2023;36(2):436–453. https://doi.org/10.30526/36.2.3066

15. Salih A.W., Habeeb S.B. Peristaltic flow with nanofluid under effects of heat source, and inclined magnetic field in the tapered asymmetric channel through a porous medium. Iraqi J Sci 2022;63(10):4445–4459. https://doi.org/10.24996/ijs.2022.63.10.30

16. Sheriff S., Ahmad S., Mir N.A. Irreversibility effects in peristaltic transport of hybrid nanomaterial in the presence of heat absorption. Sci Rep 2021;11:19697. https://doi.org/10.1038/s41598-021-99229-7

17. Farooq S., Khan M.I., Waqas M., Hayat T., Alsaedi A. Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects. Comput Methods Programs Biomed 2020;184:105086. https://doi.org/10.1016/j.cmpb.2019.105086

18. Hassen R.Y., Ali H.A. Hall and Joule's heating influences on peristaltic transport of Bingham plastic fluid with variable viscosity in an inclined tapered asymmetric channel. Ibn Al-Haitham J Pure Appl Sci 2021;34(1):68–84. https://doi.org/10.30526/34.1.2554

19. Akbar Y., Abbasi F.M. Impact of variable viscosity on peristaltic motion with entropy generation. Int Commun Heat Mass Transfer 2020;118:104826. https://doi.org/10.1016/j.icheatmasstransfer.2020.104826

20. Kareem R.S., Abdulhadi A.M. Impacts of heat and mass transfer on magnetohydrodynamic peristaltic flow having temperature-dependent properties in an inclined channel through porous media. Iraqi J Sci 2020;61(4):854–869. https://doi.org/10.24996/ijs.2020.61.4.19

21. Salman M.R., Hayat A.A. Approximate treatment for the MHD peristaltic transport of Jeffrey fluid in inclined tapered asymmetric channel with effects of heat transfer and porous medium. Iraqi J Sci 2020;61(12):3342–3354. https://doi.org/10.24996/ijs.2020.61.12.22

22. Salman M.R., Ahmed M.A. Influence of heat and mass transfer on inclined MHD peristaltic of pseudoplastic nanofluid through the porous medium with couple stress in an inclined asymmetric channel. J Phys Conf Ser 2018;1032(1):012043. https://doi.org/10.1088/1742-6596/1032/1/012043

23. Abdulhussein H., Abdulhadi A.M. Impact of couple stress and rotation on peristaltic transport of a Powell-Eyring fluid in an inclined asymmetric channel with Hall and Joule heating. J Basic Sci 2022;8(13):483–509.

24. Khan M.I., Alsaedi A., Niaz B.K., Hayat T. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation. Comput Methods Programs Biomed 2019;179:104973. https://doi.org/10.1016/j.cmpb.2019.07.001

25. Ramesh G.K., Shehzad S.A., Tlili I. Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy–Forchheimer model. Appl Math Mech 2020;41:699–710.

26. Nadeem A., Malik M.Y., Nadeem S. Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga surface. Comput Methods Programs Biomed 2020;185:105136. https://doi.org/10.1016/j.cmpb.2019.105136

27. Ahmed S.E., Rashed Z.Z. Magnetohydrodynamic dusty hybrid nanofluid peristaltic flow in curved channels. Therm Sci 2021;25(6) Part A:4241–4255. https://doi.org/10.2298/TSCI191014144A

28. Hosham H.A., Hafez N.M. Bifurcation phenomena in the peristaltic transport of non-Newtonian fluid with heat and mass transfer effects. J Appl Math Comput 2021;67(1–2):275–299. https://doi.org/10.1007/s12190-020-01477-7

29. Ibraheem R.G., Liqaa Z.H. Effect of different parameters on Powell–Eyring fluid peristaltic flow with the influence of a rotation and heat transform in an inclined asymmetric channel. Baghdad Sci J 2024;21(4):1318–1330. https://doi.org/10.21123/bsj.2023.8360

30. Abdulhussein H., Abdulhadi A.M. Impact of heat transfer and inclined MHD on a non-uniform inclined asymmetrical channel with couple stress fluid through a porous medium. Iraqi J Sci 2023;64(9):4580–4599. https://doi.org/10.24996/ijs.2023.64.9.23

31. Nassief A.M., Abdulhadi A.M. Influence of magnetic force for peristaltic transport of non-Newtonian fluid through porous medium in asymmetric channel. Iraqi J Sci 2023;64(7):3567–3586. https://doi.org/10.24996/ijs.2023.64.7.35

32. Zainab A.J., Hummady L.Z., Thawi M.H. Influence of some fluid mechanic parameters caused from heat transport with rotation on Walter’s B fluid. J Biomech Sci Eng 2023;6(39). https://doi.org/10.1007/s40430-017-0782-0

33. Farooq S., Hayat T., Khan M.I., Alsaedi A. Entropy generation minimization in magneto peristalsis with variable properties. Comput Methods Programs Biomed 2020;186:105045. https://doi.org/10.1016/j.cmpb.2019.105045

34. Muhammad K., Hayat T., Alsaedi A. Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface. Int Commun Heat Mass Transfer 2021;121:104805. https://doi.org/10.1016/j.icheatmasstransfer.2020.104

35. Aamir A., Mehak S., Hafiz J.A., Muhammad A., Kottakkaran S.N., Ahamed S.C. Entropy generation analysis of peristaltic flow of nanomaterial in a rotating medium through generalized compliant walls of micro-channel with radiation and heat flux effects. Micromachines 2022;13:375. https://doi.org/10.3390/mi13030375

36. Imran N., Javed M., Sohail M., Tlili I. Utilization of modified Darcy’s law in peristalsis with a compliant channel: applications to thermal science. J Mater Res Technol 2020;9(3):5619–5629. https://doi.org/10.1016/j.jmrt.2020.03.087

37. Abdulla S.A., Hummady L.Z. Inclined magnetic field and heat transfer of asymmetric and porous medium channel on hyperbolic tangent peristaltic flow. Int J Nonlinear Anal Appl 2021;12(2):2359–2372. http://dx.doi.org/10.22075/ijnaa.2021.5382

38. Salahuddin T., Muhammad H.U.K., Mair K., YuMing C. Peristaltically driven flow of hybrid nanofluid in a sinusoidal wavy channel with heat generation. Phys Scr 2020;96(2):025205. https://doi.org/10.1088/1402-4896/abcd68

39. Wahab M.A., Erdem E.Y. Multi-step microfluidic reactor for the synthesis of hybrid nanoparticles. J Micromech Microeng 2020;30(8):085006. https://doi.org/10.1088/1361-6439/ab8dd2

40. Muhammad K., Hayat T., Alsaedi A. Heat transfer analysis in slip flow of hybrid nanomaterial (ethylene glycol + Ag + CuO) via thermal radiation and Newtonian heating. Waves Random Complex Media 2021;1–21. https://doi.org/10.1080/17455030.2021.1950947

41. Jawad Q.K., Abdulhadi A.M. Influence of MHD and porous media on peristaltic transport for nanofluids in an asymmetric channel for different types of walls. Int J Nonlinear Anal Appl 2023;14(1):819–832. https://doi.org/10.22075/IJNAA.2022.6967

42. Falade J.A., Adesanya S.O., Ukaegbu J.C., Osinowo M.O. Entropy generation analysis for variable viscous couple stress fluid flow through a channel with non-uniform wall temperature. Alex Eng J 2016;55:69–75. https://doi.org/10.1016/j.aej.2016.01.011

43. Ahmad B., Hayat T., Abbasi F. Hydromagnetic peristaltic transport of variable viscosity fluid with heat transfer and porous medium. J Appl Math Inf Sci 2016;10(6):2173–2181. https://doi.org/10.18576/amis/100619

44. Tripathi B., Sharma B.K. Effect of variable viscosity on MHD inclined arterial blood flow with chemical reaction. Int J Appl Mech Eng 2018;23(3):767–785. https://doi.org/10.2478/ijame-2018-0042

45. Mondal S.K., Pal D. Computational analysis of bio-convective flow of nanofluid containing gyrotactic microorganisms over a nonlinear stretching sheet with variable viscosity using HAM. J Comput Des Eng 2020;7(2):251–267. https://doi.org/10.1093/jcde/qwaa021

46. Khan A., Farooq M., Nawaz R., Ayza H., Abu-Zinadah H. Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods. Open Phys 2021;19:134–145. https://doi.org/10.1515/phys-2021-0015

47. Anwar T., Kumam P. A fractal fractional model for thermal analysis of GO–NaAlg–Gr hybrid nanofluid flow in a channel considering shape effects. Case Stud Ther Eng 2022;31:101828. https://doi.org/10.1016/j.csite.2022.101828

48. Adnan F.A., Abdulhadi A.M. Effect of an inclined magnetic field on peristaltic flow of Bingham plastic fluid in an inclined symmetric channel with slip conditions. Iraqi J Sci 2019;60(7):1551–1574. https://doi.org/10.24996/ijs.2019.60.7.16

49. Vaidya H., Rajashekhar C., Manjunatha G., Prasad K.V., Makinde O.D., Vajravelu K. Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel. Results Phys 2020;18:103295. https://doi.org/10.1016/j.rinp.2020.103295

50. Abbas Z., Rafiq M.Y. Analysis of heat and mass transfer phenomena in peristaltic transportation of hyperbolic tangent fluid in tapered channel. Asia-Pac J Chem Eng 2021;16(5):e2675. https://doi.org/10.1002/apj.2675

51. Rafiq M.Y., Abbas Z., Ullah M.Z. Peristaltic mechanism of couple stress nanomaterial in a tapered channel. Ain Shams Eng J 2022;13(6):101779. https://doi.org/10.1016/j.asej.2022.101779

52. Akram S., Athar M., Saeed K., Umair M.Y. Mechanism of double diffusive convection due to magnetized Williamson nanofluid flow in tapered asymmetric channel under the influence of peristaltic propulsion and radiative heat transfer. Int J Numer Methods Heat Fluid Flow 2023. https://doi.org/10.1108/HFF-04-2023-0169.

Downloads

Published

20-Jul-2025

Issue

Section

Mathematics

How to Cite

[1]
Salih, A.W. and Abdulhadi, A.M. 2025. Variable Viscosity Impact on Peristaltic Transport of Hybrid Nanomaterial in Tapered Channel. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 3 (Jul. 2025), 347–360. DOI:https://doi.org/10.30526/38.3.3897.