An Exhaustive Survey of Deep Learning Techniques in ECG Signals

Main Article Content

Mohammed Al-Tamimi
Tamara Hameed Yousif

Abstract

     The electrocardiogram (ECG) is a widely utilized signal in the prediction of Cardiovascular Diseases (CVDs). ECG signals have the ability to detect the heart's unusual rhythmic patterns, which are generally referred to as arrhythmias. A comprehensive examination of ECG signals is crucial for the precise identification of patients' chronic heart conditions. This literature survey investigates some of the most recent studies in cardiac research where researchers embarked on the arduous task of creating an ECG signal image model to identify possible signals signifying the presence of heart disease. This survey covers algorithms for fusing ECG signal features with deep learning methods to develop deep neural networks for predicting heart disease using images obtained from recordings of ECG signals. Respectively, every study provides an aspect of understanding how complicated Deep Learning (DL) models can find undiscovered elements from ECG data that lead to earlier and correct diagnoses of cardiovascular disorders in this objective of the discussed project. Through this journey through these research findings, we will look closely at the methods used and draw conclusions on how DL models can be improved in the context of cardiac health. This paper endeavors to introduce novelty into this developing field and thus forms part of this extensive review of what is currently available in this area.

Article Details

How to Cite
[1]
Al-Tamimi, M. and Tamara Hameed Yousif 2024. An Exhaustive Survey of Deep Learning Techniques in ECG Signals. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 428–441. DOI:https://doi.org/10.30526/37.3.3901.
Section
Computer

Publication Dates

Received

2024-01-07

Accepted

2024-02-27

Published Online First

2024-07-20

References

Younis, M. A.; Al-Tamimi, M. S. Preparing of ECG Dataset for Biometric ID Identification with Creative Techniques. TEM Journal. 2022, 11(4), 1500-1507. https://doi.org/10.18421/TEM114-10.

Yousiaf, T. H.; Al-Tamimi, M. S. The Role of Artificial Intelligence in Diagnosing Heart Disease in Humans: A Review. Journal of Applied Engineering and Technological Science. 2023, 5(1), 321-338. https://doi.org/10.37385/jaets.v5i1.3413.

Morris, F. ABC of Clinical Electrocardiography; John Wiley & Sons. 2009, ISBN 978-1-444-31249-2.

Manda, Y.R.; Baradhi, K.M. Cardiac Catheterization Risks and Complications; Stat Pearls Publishing: Treasure Island, FL, USA. 2021, PMID: 30285356.

Jørgensen, M.E.; Andersson, C.; Nørgaard, B.L.; Abdulla, J.; Shreibati, J.B.; Torp-Pedersen, C.; Gislason, G.H.; Shaw, R.E.; Hlatky, M.A. Functional Testing or Coronary Computed Tomography Angiography in Patients With Stable Coronary Artery Disease. Journal of the American College of Cardiology. 2017, 69(14), 1761-1770. https://doi.org/10.1016/j.jacc.2017.01.046.

Al-Tamimi, M. S. H.; Al-Tamimi, A. S. H.; Sulong, G. A new Abnormality Detection Approach For T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes. Adv. Computer. 2016, 6(1), 6-27. https://doi.org/10.5923/j.ac.20160601.02.

Al-Tamimi, M. S. H.; Sulong, G. A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images. Modern Applied Science. 2015, 9(8), 363-379. https://doi.org/10.5539/mas.v9n8p363.

Syed,I.S.; Glockner,J.F.; Feng,D.; Araoz,P.A.; Martinez,M.W.; Edwards,W.D.; Gertz,M.A.; Dispenzieri, A.; Oh,J.K.;Bellavia,D. Role of Cardiac Magnetic Resonance Imaging in the Detection of Cardiac Amyloidosis. JACC Cardiovascular Imaging. 2010, 3(2), 155–164.

Pannu,J.; Poole,S.; Shah,N.; Shah,N.H. Assessing Screening Guidelines for Cardiovascular Disease Risk Factors using Routinely Collected Data. Scientific Reports. 2017, 7(1), 6488. https://doi.org/10.1038/s41598-017-06492-6.

Iragavarapu, T.; Radhakrishna, T.; Babu, K.J.; Sanghamitra, R. Acute Coronary Syndrome In Young—A Tertiary Care Centre Experience With Reference To Coronary Angiogram. Journal of the Practice of Cardiovascular Sciences. 2019, 5(1), 18-25. https://doi.org/10.4103/jpcs.jpcs_74_18.

Rafie, N.; Kashou, A.H.; Noseworthy, P.A. ECG Interpretation: Clinical Relevance, Challenges, and Advances. Hearts. 2021, 2(4), 505–513. https://doi.org/10.3390/hearts2040039.

Al-Tamimi, M. S. H. A Survey on The Vein Biometric Recognition Systems: Trends and Challenges. Journal of Theoretical and Applied Information Technology. 2019, 97(2), 551-568.

Cook, D.A.; Oh, S.Y.; Pusic, M.V. Accuracy of Physicians’ Electrocardiogram Interpretations. JAMA Internal Medicine. 2020, 180(11), 1461-1471. https://doi.org/10.1001/jamainternmed.2020.3989.

Higueras, J.; Gómez-Talavera, S.; Cañadas, V.; Bover, R.; P, M.L.; Gómez-Polo, J.C.; Olmos, C.; Fernandez, C.; Villacastín, J.; Macaya, C. Expertise in Interpretation of 12-Lead Electrocardiograms of Staff and Residents Physician: Current Knowledge and Comparison Between Two Different Teaching Methods. Journal Caridology Current Research. 2016, 5(3), 00160. https://doi.org/10.15406/jccr.2016.05.00160.

Abd-Alzhra, A. S.; Al-Tamimi, M. S. Image Compression Using Deep Learning: Methods and Techniques. Iraqi Journal of Science. 2022, 1299-1312. https://doi.org/10.24996/ijs.2022.63.3.34.

Schläpfer, J.; Wellens, H.J. Computer-interpreted electrocardiograms: benefits and limitations. Journal of the American College of Cardiology. 2017, 70(9), 1183-1192. https://doi.org/10.1016/j.jacc.2017.07.723.

Martínez-Losas, P.; Higueras, J.; Gómez-Polo, J.C.; Brabyn, P.; Ferrer, J.M.F.; Cañadas, V.; Villacastín, J.P. The Influence of Computerized Interpretation of An Electrocardiogram Reading. The American journal of emergency medicine. 2016, 10(34), 2031-2032.

https://doi.org/10.1016/j.ajem.2016.07.029.

Dey,S.; Pal,R.; Biswas,S. Deep Learning Algorithms for Efficient Analysis of ECG Signalsto Detect Heart Disorders. In Biomedical Engineering; Intech Open: London, UK. 2022. https://doi.org/10.5772/intechopen.103075.

Abed, R. M.; Abdulmalek, H. W.; Yaaqoob, L. A.; Altaee, M. F.; Kamona, Z. K. Genetic Polymorphism of TLR5 and TLR6 in Iraqi Patients with Heart Failure Disease. Iraqi Journal of Science. 2023, 64(4), 1662–1674. https://doi.org/10.24996/ijs.2023.64.4.9.

Moini, J. Anatomy and physiology for health professionals; Jones & Bartlett Publishers: 2015.

Al-Juboori, R. A. L. Contrast Enhancement of the Mammographic Image Using Retinex with CLAHE methods. Iraqi Journal of Science. 2017, 58(1B), 327–336.

Rahma, M. M.; Salman, A. D. Heart Disease Classification–Based on the Best Machine Learning Model. Iraqi Journal of Science. 2022, 63(9), 3966–3976. https://doi.org/10.24996/ijs.2022.63.9.28.

Sadiq, A. T.; Mahmood, N. T. A Hybrid Estimation System For Medical Diagnosis Using Modified Full Bayesian Classifier And Artificial Bee Colony. Iraqi Journal of Science. 2014, 55(3A), 1095-1107.

Park, J.; An, J.; Kim, J.; Jung, S.; Gil, Y.; Jang, Y.; Lee, K.; young Oh, I. Study on the Use of Standard 12-lead ECG Data for Rhythm-Type ECG Classification Problems. Computer Methods Programs Biomed. 2021, 21, 106521. https://doi.org/10.1016/j.cmpb.2021.106521.

Rath, A., Mishra, D., Panda, G.; Sat apathy, S. C. Heart Disease Detection Using Deep Learning Methods From Imbalanced ECG Samples. Biomedical Signal Processing and Control. 2021, 68, 102820. https://doi.org/10.1016/j.bspc.2021.102820.

S., C. V.; Ramaraj, E. A Novel Deep Learning based Gated Recurrent Unit with Extreme Learning Machine for Electrocardiogram (ECG) Signal Recognition. Biomedical Signal Processing and Control. 2021, 68, 102779. https://doi.org/10.1016/j.bspc.2021.102779.

Shkara, A. A.; Hussain, Y. Heartbeat Amplification and ECG Drawing from Video (Black and White or Colored Videos). Iraqi Journal of Science. 2018, 59(1B) ,408-419. https://doi.org/10.24996/ijs.2018.59.1B.21.

Vasconcellos, M. M. E.; Ferreira, B. G.; Leandro, J. S.; Neto, B. F. S.; Cordeiro, F. R.; Cestari, I. A.; Gutierrez, M. A.; Sobrinho, Á.; Cordeiro, T. D. Siamese Convolutional Neural Network for Heartbeat Classification Using Limited 12-Lead ECG Datasets. IEEE Access. 2023, 11, 5365–5376. https://doi.org/10.1109/ACCESS.2023.3236189.

Wang, M.; Rahardja, S.; Fränti, P.; Rahardja, S. Single-Lead ECG Recordings Modeling for end-to-end Recognition of Atrial Fibrillation With Dual-Path RNN. Biomedical Signal Processing and Control. 2023, 79, 104067. https://doi.org/10.1016/j.bspc.2022.104067.

Yoneyama K; Naka M; Harada T; Akashi Y. Creating 12-Lead electrocardiogram Waveforms Using A Three-Lead Bedside Monitor To Ensure Appropriate Monitoring. Journal of Arrhythmia. 2020, 36(6) ,1107. https://doi.org/10.1002/joa3.12441.

Saad NM; Abdullah AR; Low YF. Detection of Heart Blocks In ECG Signals By Spectrum And Time-Frequency Analysis. In: 2006 4th Student Conference on Research and Development. Piscataway, New Jersey, United States: IEEE. 2006; 61-65. https://doi.org/10.1109/SCORED.2006.4339309.

Ozyilmaz L; Yildirim T. Artificial Neural Networks for Diagnosis of Hepatitis Disease. In: Proceedings of the International Joint Conference on Neural Networks. 2003, 1, 586-589. https://doi.org/10.1109/IJCNN.2003.1223422.

Mao WB; Lyu JY; Vaishnani DK; Lyu YM; Gong W; Xue XL. Application of Artificial Neural Networks in Detection and Diagnosis of Gastrointestinal and Liver Tumors. World Journal of Clinical Cases (WJCC). 2020, 8(18), 3971-3977. https://doi.org/10.12998/wjcc.v8.i18.3971.

Krizhevsky A; Sutskever I; Hinton GE. ImageNet Classification With Deep Convolutional Neural Networks. Communications of the ACM. 2017, 60(6), 84-90. https://doi.org/10.1145/3065386.

Sunny MAI; Maswood MMS; Alharbi AG. Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model. In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). Piscataway, New Jersey, United States: IEEE. 2020, 87-92. https://doi.org/10.1109/NILES50944.2020.9257950.

Mansoor, M.; Al Tamimi, M. Plagiarism Detection System In Scientific Publication Using LSTM Networks. International Journal Technical and physical problems of engineering. 2022, 4(4), 17-24.

Yu X; He J; Zhang Z. Facial Image Completion Using Bi-Directional Pixel LSTM. IEEE Access. 2020, 8, 48642-48651. https://doi.org/10.1109/ACCESS.2020.2975827.

Rawshani, A. The ECG Leads: Electrodes, Limb Leads, Chest (Precordial) Leads, 12-Lead ECG (EKG). Available online: https://ecgwaves.com/topic/ekg-ecg-leads-electrodes-systems-limb-chest-precordial .

Ribeiro, A.H.; Ribeiro, M.H.; Paixão, G.M.M.; Oliveira, D.M.; Gomes, P.R.; Canazart, J.A.; Ferreira, M.P.S.; Andersson, C.R.; Macfarlane, P.W.; Meira, W. Automatic Diagnosis of the 12-lead ECG Using A Deep Neural Network. Nature communications. 2020, 11(1), 1760-1772. https://doi.org/10.1038/s41467-020-15432-4.

Muhammad, Y.; Tahir, M.; Hayat, M.; Chong, K.T. Early and Accurate Detection and Diagnosis of Heart Disease Using Intelligent Computational Model. Scientific Reports. 2020, 10(1), 19747. https://doi.org/10.1038/s41598-020-76635-9.

Rohit Bharti; Aditya Khamparia; Mohammad Shabaz, Gaurav Dhiman; Sagar Pande; Parneet Singh; Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Computational Intelligence and Neuroscience. 2021, Article ID 8387680. https://doi.org/10.1155/2021/8387680.

Zeleznik, R.; Foldyna, B.; Eslami, P. Deep Convolutional Neural Networks To Predict Cardiovascular Risk From Computed Tomography. Nature communications. 2021, 12(1), 715-726. https://doi.org/10.1038/s41467-021-20966-2.

Fatema K; Montaha S; Rony MAH; Azam S, Hasan MZ; Jonkman M. A Robust Framework Combining Image Processing and Deep Learning Hybrid Model to Classify Cardiovascular Diseases Using a Limited Number of Paper-Based Complex ECG Images. Biomedicines. 2022, 10(11), 2835-2848. https://doi.org/10.3390/biomedicines10112835.

Mhamdi, L.; Dammak, O.; Cottin, F.; Dhaou, I.B. Artificial Intelligence for Cardiac Diseases Diagnosis and Prediction Using ECG Images on Embedded Systems. Biomedicines. 2022, 10(8), 2013. https://doi.org/10.3390/biomedicines10082013.

Ao R; He G. Image Based Deep Learning in 12-lead ECG Diagnosis. Frontiers in Artificial Intelligence. 2023, 5, 1087370. https://doi.org/10.3389/frai.2022.1087370.

Golande, A.L.; Pavankumar, T. Optical electrocardiogram Based Heart Disease Prediction Using Hybrid Deep Learning. Journal Big Data. 2023, 10(1), 139-150. https://doi.org/10.1186/s40537-023-00820-6.

Gadaleta, M.; Harrington, P.; Barnhill. Prediction of Atrial Fibrillation From At-Home Single-Lead ECG Signals Without Arrhythmias. NPJ Digital Medicine. 2023, 6(1), 229. https://doi.org/10.1038/s41746-023-00966-w.

M. Bukhari; S. Yasmin; S. Naz; M. Y. Durrani; M. A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM. Computers, Materials & Continua. 2023, 77(1), 1251–1279. https://doi.org/ 10.32604/cmc.2023.040329.

Seyed Matin Malakouti. Heart Disease Classification Based on ECG Using Machine Learning Models. Biomedical Signal Processing and Control. 2023, 84, 104796. https://doi.org/10.1016/j.bspc.2023.104796.

Deepika, S.; Jaisankar, N. Review on machine learning and deep learning-based heart disease classification and prediction. The Open Biomedical Engineering Journal. 2023, 17(1). https://doi.org/10.2174/18741207-v17-e230110-2022-HT27-3589-17.

Hima Vijayan VP; Reshma S, R; Sathyanjan; Vaishnavi Geetha. Integrating Deep Learning Architectures for Improved Arrhythmia Detection in electrocardiogram Signals. International Journal of Science and Research Archive. 2023, 08(02), 704–715. https://doi.org/10.30574/ijsra.2023.8.2.0332

Cuevas-Chávez, A.; Hernández, Y.; Ortiz-Hernandez, J.; Sánchez-Jiménez, E.; Ochoa-Ruiz, G.; Pérez, J.; González-Serna, G. A Systematic Review of Machine Learning and IoT Applied to the Prediction and Monitoring of Cardiovascular Diseases. Healthcare. 2023, 11(16), 2240. https://doi.org/10.3390/healthcare11162240.