Estimate the parameters of Exponential-Rayleigh distribution, by using Bayesian method
DOI:
https://doi.org/10.30526/ebd49144Keywords:
Bayesian method, Exponential-Rayleigh distribution, Tierney and kadane approximation Bayes estimation method, Linedely approximation Bayes estimation method, Simulation techniqueAbstract
In this paper, point estimation method for parameters α and λ of the parameters of the Exponential-Rayleigh distribution have been estimated by the use of a simulation technique by using two Bayesian estimation methods; the first Bayesian method of estimation consists of Lindely approximation estimation method and the second Bayesian estimation method consists Tierney and kadane approximation estimation method to estimate all the unknown parameters (α,λ) of Exponential-Rayleigh distribution. Comparisons between these two methods were made by employing mean squares error criterion. Applying a simulation technique with different sample sizes, these methods are being compared.
References
1. Ramos PL, Rodrigues FA, Ramos E, Dey DK, Louzada F. Power laws distributions in objective priors. Statistica Sinica. 2023;33:1959-1984. https://doi.org/10.5705/ss.202020.0521
2. Hussein LK, Hussein IH, Rasheed HA. An estimation of survival and hazard rate functions of exponential Rayleigh distribution. Ibn AL-Haitham Journal for Pure and Applied Sciences. 2021;34:93-107. https://doi.org/10.30526/34.4.2706
3. Shatti RN, Al-Kinani IH. Estimating the parameters of exponential-Rayleigh distribution under Type-I censored data. Baghdad Science Journal. 2024;21:146-150. https://doi.org/10.21123/bsj.2023.79627
4. Isaac RS, Mehta NB. Efficient computation of multivariate Rayleigh and exponential distributions. IEEE Wireless Communications Letters. 2019;8:456-459. https://doi.org/10.1109/LWC.2018.2875999
5. Ferreira P, Gonzales J, Tomazella V, Ehlers R, Louzada F, Silva E. Objective Bayesian analysis for the Lomax distribution. Statistical Papers. 2016;1-19. https://doi.org/10.1016/j.spl.2019.108677
6. Mazaal AR, Karam NS, Karam GS. Comparing Weibull stress-strength reliability Bayesian estimators for singly type II censored data under different loss functions. Baghdad Science Journal. 2021;18:306-314. https://doi.org/10.21123/bsj.2021.18.2.0306
7. Al-Baldawi. Tasnim H.K. Comparison of maximum likelihood and some Bayes estimators for Maxwell distribution based on non-informative priors. Baghdad Science Journal. 2013;10(2):480-488. https://doi.org/10.21123/bsj.10.2.480-488
8. Iden H., Sara S. Taher. Bayesian and non-Bayesian methods to estimate the two parameters of logistic distribution. Baghdad Science Journal. 2014;11(4):1612-1623. https://doi.org/10.21123/bsj.2014.11.4.1612-1623
9. Rasheed HA. Bayes estimators for the Maxwell distribution under quadratic loss function using different priors. Baghdad Science Journal. 2016.
10. Alkanani IH, Salman SG. Bayes and non-Bayes estimation methods for the parameter of Maxwell-Boltzmann distribution. Baghdad Science Journal. 2017;14:808-812. https://doi.org/10.21123/bsj.2017.14.4.0808
11. Kalt HG, Hussein IH. Bayesian estimation for parameters and the survival function of modified Weibull distribution using Tierney and Kadane’s approximation. Journal of Advanced Research in Dynamical and Control Systems. 2018;10:1960-1970.
12. Mohammed MJ, Hussein IH. Some estimation methods for new mixture distribution with simulation and application. IOP Conference Series: Materials Science and Engineering. 2019;571. https://doi.org/10.1088/1757-899X/571/1/012014
13. Fatima K, Ahmad SP. Statistical properties of exponential Rayleigh distribution and its applications to medical science and engineering. Journal of Statistical Distributions and Applications. 2013;2:491-506.
14. Hussein LK, Rasheed HA, Hussein IH. A class of exponential Rayleigh distribution and new modified weighted exponential Rayleigh distribution with statistical properties. Ibn AL-Haitham Journal for Pure and Applied Sciences. 2023;36:390-406. https://doi.org/10.30526/36.2.3044
15. Asparouhov T, Muthén B. Bayesian analysis using Mplus: Technical implementation. Mplus Journal. 2010;1-38.
16. Kruschke JK. What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences. 2010;14:293-300. https://doi.org/10.1016/j.tics.2010.05.001
17. Al-noor NH. Non-Bayes, Bayes and empirical Bayes estimators for the shape parameter of Lomax distribution. Journal of Statistical Theory and Practice. 2015;5:17-28.
18. Virbickaite A, Ausín MC, Galeano P. Bayesian inference methods for univariate and multivariate GARCH models: A survey. Journal of Economic Surveys. 2015;29:76-96. https://doi.org/10.1111/joes.12046
19. Guure CB, Ibrahim NA, Ahmed AOM. Bayesian estimation of two-parameter Weibull distribution using extension of Jeffreys’ prior information with three loss functions. Mathematical Problems in Engineering. 2012;2012. https://doi.org/10.1155/2012/589640
20. Rasheed HA, Abd MN. Bayesian estimation for two parameters of exponential distribution under different loss functions. Ibn AL-Haitham Journal for Pure and Applied Sciences. 2023;36:289-300. https://doi.org/10.30526/36.2.2946
21. Pradhan B, Kundu D. Bayes estimation and prediction of the two-parameter gamma distribution. Journal of Statistical Computation and Simulation. 2011;81:1187-1198. https://doi.org/10.1080/00949651003796335
22. Asparouhov T, Muthen B. Bayesian analysis of latent variable models using Mplus. Technical Report. Version 5. 2021;1-60. https://doi.org/10.3758/s13423-016-1016-7
23. Preda V, Panaitescu E, Constantinescu A. Bayes estimators of modified-Weibull distribution parameters using Lindley’s approximation. WSEAS Transactions on Mathematics. 2010;9:539-549.
24. Singh PK, Singh SK, Singh U. Bayes estimator of inverse Gaussian parameters under general entropy loss function using Lindley’s approximation. Communications in Statistics - Simulation and Computation. 2008 ;37 :175 0-17 62. https://doi.org/10.1080/03610910701884054
25. Sana S, Faizan M. Bayesian estimation using Lindley’s approximation and prediction of generalized exponential distribution based on lower record values. Journal of Statistics Applications and Probability. 2021;10:61-75. https://doi.org/10.18576/jsap/100107
26. Sharma VK, Singh SK, Singh U. Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data. Communications for Statistical Applications and Methods. 2017;24:193-209. https://doi.org/10.5351/CSAM.2017.24.3.193
27. Guure CB, Ibrahim NA. Approximate Bayesian estimates of Weibull parameters with Lindley’s method. Sains Malaysiana. 2014;43:1433-1437.
28. Bastan F, Mirmostafaee SMTK. Approximating Bayes estimates by means of the Tierney Kadane, importance sampling and Metropolis-Hastings within Gibbs methods in the Poisson-Exponential distribution: A comparative study. 2019;10:62-77.
29. Kazmi MSA, Aslam M, Ali S. On the Bayesian estimation for two component mixture of Maxwell distribution, assuming Type I censored data. International Journal of Applied Science and Technology. 2012;2:197-218.
30. Ari Y. Bayesian estimation of GARCH (1,1) model using Tierney-Kadane’s approximation. 2022. https://doi.org/10.1007/978-3-030-02194-8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms