Evaluation of Optical Efficiency of Circular Cross-Section Torus Waveguide via Changing the Optical Parameters

Authors

DOI:

https://doi.org/10.30526/38.2.3932

Keywords:

Waveguide, Torus, Solar concentrator, Acceptance angle, Solar radiation, Circular cross-section

Abstract

The efficiency of solar systems was developed through the design of a torus waveguide, which provides high flexibility in the design of the solar system. The design was simulated using the optical design program (ANSYS Zemax Optic Studio 2022). The circular cross-section torus waveguide was shaped like the letters (U, S) to transmit solar radiation through total internal reflection inside the waveguide to the receiver (solar cell or thermal reservoir). To improve the solar system's efficiency, a group of optical parameters related to the waveguide's shape were changed to demonstrate the effect of changing them on the system's performance. These parameters include the radius of curvature of the waveguide, the width of the entry apertures, and the angle of rotation. The results showed that the designed waveguide shapes offer high flexibility in size and shape without significantly affecting the system's efficiency. This flexibility allows for greater diversity in the design of solar systems, depending on their intended purpose.

Author Biographies

  • Kawthar H. Abd Al-Majeed , Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad,

    Baghdad, Iraq.

  • Alaa B. Hasan , Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad,

    Baghdad, Iraq

  • Sameer H. R. Aldeen , Azarbaijan Shahid Madani University, Iran.

     

    Azarbaijan Shahid Madani University, Iran.

References

1. Khaligh OC, Alireza S. Energy harvesting: solar, wind, and ocean energy conversion systems. CRC press. 2017;22:12-23. https://doi.org/10.1201/9781439815090

2. Heidari N, Pearce JM. A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages, Renew. Sustain. Energy Rev. 2016;55(2):899–908. https://doi.org/10.1016/j.rser.2015.11.025

3. Ginley NR, Green A. Solar Energy Conversion Toward 1 Terawatt, Hornessing Mater. Energy. 2008;12(3):355–364. https:// doi.org/10.1557/mrs2008.71

4. Irena A. Renewable Energy Cost Analysis - Concentrating Solar Power, Int. Renew. Energy Agency Renew. 2012;23:1–41.

5. Rauschenbach S, Hans S. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion, Springer Sci. Bus. Media .2012.

6. Dudley E, Kolb J, Mahoney A, Mancini T, Kearney D. Test results: SEGS LS-2 solar collector. Sandia National Laboratory. 1994;140:33-45.

7. Duffie WB, John A. Solar engineering of thermal processes. John Wiley & Sons, Appl. Opt. 2013;12: 55-67. https://dOI:10.1002/9781118671603

8. Zhang JX, Hoshino K. Optical molecular sensing and spectroscopy. Optical transducers. 2019;12(2): 23-45. https:// doi.org/10.1016/B978-0-12-814862-4.00005-3

9. Yoneda N, Miyazaki M, Matsumura H, Yamato M. A design of novel grooved circular waveguide polarizers, IEEE Trans. Microw. Theory Tech. 2000;48:2446–2452. https://doi.org/10.1109 /22.898996

10. Karp JH, Ford JE. Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide, High Low Conc. Syst. Sol. Electr. Appl. IV. 2009;74(4):70-76. https://doi.org/10.1117/12.826531

11. Karp JH, Tremblay EJ, Ford JE. Radial coupling method for orthogonal concentration within planar micro-optic solar collectors. Opt. InfoBase Conf. Pap. 2010;12:9–11.

12. Cheng YL. Review on Optical Waveguides. Shankar, Intech. 2018;11(2):13-18. https://doi.org/10.5772/intechopen.77150

13. Bauser HC. Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics. 2020;7:2122–2131. https:// doi.org/10.1021/acsphotonics.0c00593

14. Rühle S, Greenwald S, Koren E, Zaban A. Optical waveguide enhanced photovoltaics. Opt. Express. 2008;16(2):26-32. https:// doi.org/10.1364/OE.16.021801

15. Wang YM, Zheng G, Yang C. Characterization of acceptance angles of small circular apertures. Opt. Express. 2009;12(3):45-56. https://doi.org/10.1364/oe.17.023903

16. Murphy F, Tommy D. Analysing curved optical waveguides using the finite difference beam propagation method. Appl. Opt. 2020;11(2):67-78.

17. Farhan M, Adnan BI. The effect of temperature on polymethyl methacrylate acrylic (PMMA). Appl. Opt. 2013;17:22-34. https://doi.org/10.1016/j.polymertesting.2016.12.016

18. Hsu M¬Y, Shenq TC, Ting MH. Thermal optical path difference analysis of the telescope correct lens assembly. Advanced Optical Technologies. 2012;6(4):447-453.‏ https://doi.org /10.1515/aot-2012-0058.

19. Mahajan VN. Optical Imaging and Aberrations. Ray Geometrical Optics, Part I, II, By SPIE: Press Monograph. 1998;45:344-355. https://doi.org/10.1117/3.265735

20. Sanyal S, Ajay G. The factor of encircled energy from the optical transfer function. Journal of Optics A: Pure and Applied Optics. 2002;4:208-211. https://dOI.10.1088/1464-4258/4/2/316

21. Al-Saadi TM, Hussein BH, Hasan AB, Shehab AA. Study the structural and optical properties of Cr doped SnO2 nanoparticles synthesized by sol-gel method. Energy Procedia. 2019;157:457–465. https://doi.org/10.1016/j.egypro.2018.11.210

22. Alaa BH, Husain SA. Design of Light Trapping Solar Cell System by Using Zemax Program. Journal of Physics: Conference Series. 2018;1003:25- 32. https://doi.10.1088/1742-6596/1003/1/012074

23. Alaa BH. Studying Optical Properties of Quantum Dot Cylindrical Fresnel Lens. NeuroQuantology 2022;20(2):97–104. https:// doi.org/10.14704/nq.2022.20.1.NQ22013.

24. Hamza HN, Alaa BH. Design of Truncated Hyperboloid Solar Concentrator by Using Zemax Program. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 2022;35(2):1-7. https://doi.org/ 10.30526/35.1.2780.

25. Al-Hamdani AH, Rashid HG, Hasan AB. Irradiance distribution of image surface in microlens array solar concentrator. ARPN Journal of Engineering and Applied Sciences. 2013;5:23-31.

26. Karszewski KM, Stewen C, Giesen A, Huge H. Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb :YAG laser, Quantum Electron. Optica Mag. 1999;29:86-97. https://doi.10.1070/QE1999v029n08ABEH001555

27. Mohammad HS. Determination and suppression of back reflected pump power in Yb:YAG thin-disk laser. Optical Engineer. 2017;56(1):1-8. https:// doi.org/10.1117/1.OE.56.2.026109

28. Hariton V. Feasibility study and simulation of a high energy diode pumped solid-state amplifier. Tecnico Lisboa. 2016;12(3);1-94.

29. Kazemi SS, Mahdieh MH. Determination and suppression of back-reflected pump power in Yb:YAG thin-disk laser, Optical Engineering. 2017;56:026109. https:// doi.org/10.1117/1.OE.56.2.026109

30. Weichelt V, Von B. Experimental Investigations on Power Scaling of High-Brightness CW Ytterbium-Doped Thin-Disk Lasers, App. Opt. 2021;23:1–23.

Downloads

Published

20-Apr-2025

Issue

Section

Physics

How to Cite

[1]
Abd Al-Majeed , K.H. et al. 2025. Evaluation of Optical Efficiency of Circular Cross-Section Torus Waveguide via Changing the Optical Parameters. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 102–114. DOI:https://doi.org/10.30526/38.2.3932.