Generalization of Fixed Point Theorem for φ- Contraction Mapping of a Fuzzy b- Metric Space
DOI:
https://doi.org/10.30526/38.3.3943Keywords:
Complete fuzzy b- metric space, Compact fuzzy b-metric space, Fixed point, Fuzzy b- metric spaceAbstract
Let (X,W,T) be a fuzzy b- metric space, where X is a non-empty set, W is a fuzzy set on X×X×(0,∞) to [0,1], and T is a continuous t-norm, and let a function φ:[0,1]→[0,1] satisfies the following conditions: The function φ is strictly decreasing and continuous, φ(c)=0 If and only if c equals 1 and φ(T(c,a))= T(φ(c),φ(a)), where c and a in X. Which is called φ- function and use it to define φ- Contraction mappings of type Ι and ΙΙ. In this research, we will complete the study of many authors about fixed point theory on fuzzy b-metric spaces as Ashraf (1) and Rakic et al (2) and generalize some results on fixed points theory on fuzzy metric spaces to fuzzy b- metric spaces with simplify different proofs. Shen et,al (3) established many results on compact fuzzy metric spaces and complete fuzzy metric spaces. we generalize results of Shen et al to fuzzy b-metric spaces by using φ – Contraction mappings of type Ι and ΙΙ in both complete and compact fuzzy b- metric spaces to show existence of fixed points for this type of self-mapping.
References
1. Ashraf M.S. Fixed point theorems in fuzzy b-metric spaces. PhD Dissertation, Capital Univ Sci Technol, Islamabad Capital Territory, Pakistan 2022;1–137.
2. Rakić D., Mukheimer A., Došenović T., Mitrović Z.D., Radenović S. On some new fixed point results in fuzzy b-metric spaces. J Inequal Appl 2020;99. https://doi.org/10.1186/s13660-020-02371-3
3. Shen Y., Qiu D., Chen W. Fixed point theorems in fuzzy metric spaces. Appl Math Lett 2012;25:138–141. https://doi.org/10.1016/j.aml.2011.08.002
4. Kramosil I., Michálek J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975;11:336–344.
5. Grabiec M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst 1988;27:385–389. https://doi.org/10.1016/0165-0114(88)90064-4
6. Bakhtin I. The contraction mapping principle in quasimetric spaces. Func An Gos Ped Inst Unianowsk 1989;30:26–37.
7. Nădăban S. Fuzzy b-metric spaces. Int J Comput Commun Control 2016;11:273–281.
8. George A., Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets Syst 1994;64:395–399. https://doi.org/10.1016/0165-0114(94)90162-7
9. Banach S. Sures opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam Math 1922;3:133–181.
10. Jamil Z.Z., Hussein Z. Common fixed point of Jungck Picard iterative for two weakly compatible self-mappings. Iraqi J Sci 2021;62. https://doi.org/10.24996/10.24996/ijs.2021.62.5.32
11. Maibed Z. Generalized tupled common fixed point theorems for weakly compatible mappings in fuzzy metric space. Int J Civil Eng Technol 2019;10:255–273.
12. Amini-Harandi A. Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl Math Lett 2011;24:1791–1794. https://doi.org/10.1016/j.aml.2011.04.033
13. Aydi H., Bota M.-F., Karapinar E., Moradi S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point Theory 2012;13.
14. Aydi H., Karapinar E., Roldán López de Hierro A.F. ω-Interpolative Ćirić-Reich-Rus-type contractions. Mathematics 2019;7. https://doi.org/10.3390/math7010057
15. Maibed Z.H. Common fixed point problem for classes of nonlinear maps in Hilbert space. IOP Conf Ser Mater Sci Eng 2020;871:012037. https://doi.org/10.1088/1757-899X/871/1/012037
16. Karapınar E., Samet B., Zhang D. Meir–Keeler type contractions on JS-metric spaces and related fixed point theorems. J Fixed Point Theory Appl 2018;20:60. https://doi.org/10.1007/s11784-018-0544-3
17. Thajil A.Q., Maibed Z.H. The convergence of iterative methods for quasi δ-contraction mappings. J Phys Conf Ser 2021;1804:012017. https://dx.doi.org/10.1088/1742-6596/1804/1/012017
18. Maibed Z.H., Hussein S.S. Some theorems of fixed point approximations by iteration processes. J Phys Conf Ser 2021;1818:012153. https://dx.doi.org/10.1088/1742-6596/1818/1/012153
19. Abbas M., Lael F., Saleem N. Fuzzy b-metric spaces: fixed point results for ψ-contraction correspondences and their application. Axioms 2020;9. https://doi.org/10.3390/axioms9020036
20. Mitrović Z. Fixed point results in b-metric space. Fixed Point Theory 2019;20:559–566. https://doi.org/10.24193/fpt-ro.2019.2.36
21. Sabri R.I., Ahmed B.A.A. Best proximity point theorem for α̃–ψ̃-contractive type mapping in fuzzy normed space. Baghdad Sci J 2023;20:1722. https://doi.org/10.21123/bsj.2023.7509
22. Maibed Z.H., Thajil A.Q. Zenali iteration method for approximating fixed point of a δZA-quasi contractive mappings. Ibn Al-Haitham J Pure Appl Sci 2021;34:78–92. https://doi.org/10.30526/34.4.2705
23. Kalaf B.A., Hussein Maibed Z. A review of the some fixed point theorems for different kinds of maps. Ibn Al-Haitham J Pure Appl Sci 2023;36:283–288. https://doi.org/10.30526/36.3.3006
24. Naveen C., Bharti J., Mahesh C. Joshi. Generalized fixed point theorems on metric spaces. Math Morav 2022;26:85–101. https://doi.org/10.5937/MatMor2202085C
25. Monje Z.A.A.M., Ahmed B.A.A. A study of stability of first-order delay differential equations using fixed point theorem Banach. Iraqi J Sci 2019;60:2719–2724. https://doi.org/10.24996/ijs.2019.60.12.22
26. Mehmood F., Ali R., Hussain N. Contractions in fuzzy rectangular b-metric spaces with application. J Intell Fuzzy Syst 2019;37:1275–1285. https://doi.org/10.3233/JIFS-182719
27. Hadžić O. A fixed point theorem in Menger spaces. Publ Inst Math 1979;26(40):107–112.
28. Sedghi S., Shobe N. Common fixed point theorem in b-fuzzy metric space. Nonlinear Funct Anal Appl 2012;17:349–359.
29. Klement E.P., Mesiar R., Pap E. Triangular norms. Trends Log 2000;8. Dordrecht: Kluwer Academic Publishers.
30. Hadžić O. A fixed point theorem in Menger spaces. Publ Inst Math 1979;26(40):107–112.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms