The Effect of Scattering of Phonons, Size and Grain Boundary on Electrical Properties for Ruthenium Nano Metals

Authors

DOI:

https://doi.org/10.30526/38.1.3957

Keywords:

Phonons, electrical properties, size, grain

Abstract

        The study examines the impact of thickness on the electrical resistance of Ruthenium at room temperature. By applying the Fuchs-Sondheier and Mayadas Shatzkces models, the study establishes a linear relationship between thickness and grain boundary scattering. The M.S. model is crucial in calculating the size impact, accounting for all types of scattering affecting grain boundaries. On the other hand, the F.S. model focuses on explaining conduction electron scattering on material surfaces, particularly on tiny grains. The study's equation, derived from these two models, considers surface scattering and metal resistance to determine an experimental thickness that depends on metal resistivity. The Boltzmann Equation can be utilized to solve this equation. The study highlights the significance of Ruthenium as a common component of electrical and electronic circuits in producing electronic chips due to its excellent electrical conductivity.

                                                       

Author Biographies

  • Reda F. Hanon Almajedi , Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad ,Baghdad, Iraq.

    Department of Physics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

  • May A. S. Mohammed , Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad ,Baghdad, Iraq.

    Department of Physics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

  • Haider FA. Abdul Amir , University of Algoma, Canada.

    University of Algoma, Canada.

References

1. Cheng YL, Lee CY, Huang YL. Properties and Applications of Ruthenium. Intech Open. 2016;11(13):377-390. https://DOI:10.5772/intechopen.76393

2. Sahu AK, Dash DK, Mishra K, Mishra SP, Yadav R, Kashyap P. Properties and applications of ruthenium. In Noble and precious metals-properties, nanoscale effects and applications. Intech Open. 2018;23(12):23-34. https://DOI:10.5772/intechopen.76393

3. Marom H, Eizenber M. The effect of surface roughness on the resistivity increase in nanometric dimensions. J Appl Phys. 2006;99(12):1-8. https://doi:10.1063/1.2204349

4. Lim JW, Mimura K, Isshiki M. Thickness dependence of resistivity for Cu films deposited by ion beam deposition. Appl Surf Sci.. 2003;217(23):95-99. https://doi:10.1016/S0169-4332(03)00522

5. Dutta SK, Moors K. Thickness dependence of the resistivity of platinum-group metal thin films. J Appl Phys. 2017;122(2):1-30. https://doi:10.1016/S0169-4332(03)00522-1

7. Gall D. Electron mean free path in elemental metals. J Appl Phys. 2016;119(8):1-5. https://doi:10.1063/1.4942216

8. Moraga L, Arenas C, Henriquez R, Bravo S, Solis B. The electrical conductivity of polycrystalline metallic films. Phys. B. Condens Matter. 2016;499:17–23. https://doi:10.1016/j.physb.2016.07.001

9. Moraga L, Arenas C, Henriquez R, Bravo S, Solis B. The effect of surface roughness and grain-boundary scattering on the electrical conductivity of thin metallic wires, Phys. Status Solidi Basic Res. 2015;252:219–229. https://doi:10.1002/pssb.201451202

10. Tellier CR, Tosser AJ. A theoretical description of grain boundary electron scattering by an effective mean free path. Thin Solid Films. 1982;51(3):311-317. https://doi:10.1016/0040-6090(78)90293-6

11. Pazukha IM, Protsenko IY. Theoretical methods Investigation of the properties of thin film materials, 2017;11(2):101-120. http://essuir.sumdu.edu.ua/handle/123456789/59581

12. Van MJ. Size effects in double-layer metallic films. Concrete Fracture. 2012;7:184-219. https://doi:10.1201/b12968-13

13. Lucas MP. Size effects in double-layer metallic films. Thin Solid Films. 1971;7(6):435-444.‏ https://doi.org/10.1016/0040-6090(71)90040-X

14. Mirigliano M, Milani P. Electrical conduction in nanogranular cluster-assembled metallic films. Adv Phys. 2021;6(1):1-40. https://doi:10.1103/PhysRevB.1.1382

15. Zhang QG, Zhang X, Cao BY, Fujii M, Takahashi K, Ikuta T. Influence of grain boundary scattering on the electrical properties of platinum nanofilms. Appl Phys. 2006;89(11):1-3. https://doi:10.1063 /1.2338885

16. Jin JS, Lee JS, Kwon O. Electron effective mean free path and thermal conductivity predictions of metallic thin films. Appl Phys. Let. 2008;92(17):1–4. https://doi:10.1063/1.2917454

17. Meteab FA, Mohammed MA, Kanbur U. The effect of phonons-surface and grain-boundary scattering on electrical properties of metallic Ag. Ibn al-Haitham j pure appl sci. 2023;36(4):182-187.‏ https://doi.org/10.30526/36.4.3234

18. Udachan L, Shiva L, Ayachit N, Banagar A, Kolkundi S, Bhairamadagi S. Impact of substrate temperature on surface and grain boundary reflection in thin chromium nanofilms. J Phys Conf Ser. 2019;1186(1):1-8. https://doi:10.1007/BF00552414

19. Zhang X, Huang H, Patlolla R, Wang W, Mont FW, Li J, Edelstein D. Ruthenium interconnect resistivity and reliability at 48 nm pitch. In 2016 IEEE International interconnect technology conference/advanced metallization conference (IITC/AMC). 2016;23(3):31–33. https://doi:10.1109/IITC-AMC.2016. 7507650

20. Gall D. The search for the most conductive metal for narrow interconnect lines. J Appl Phys. 2020;127(5):112-134. ‏https://doi.org/10.1063/1.5133671

21. Alderbas FAM, Najeeb MA. The effect of phonons-surface and grain-boundary scattering on electrical properties of metallic Al, Cu. In AIP Conference Proceedings. 2023;3018(1). https://doi.org/10.1063/5.0172558

22. Smith RS, Ryan ET, Hu CK, Motoyama K, Lanzillo N, Metzler D, Wright S. An evaluation of Fuchs-Sondheimer and Mayadas-Shatzkes models below 14nm node wide lines. AIP Adv. 2019;9(2):24-45. https://doi.org/10.1063/1.5063896

23. Henriquez R. Electron grain boundary scattering and the resistivity of nanometric metallic structures. The American Physical Society. 2010;82(11):2–5. https://doi:10.1103/PhysRevB.82.113409

24. Kim MS. Scaling Properties of Ru, Rh, and Ir for Future Generation Metallization. IEEE J Electron Devices Soc.. 2023;11:399–405. https://doi:10.1109/JEDS.2023.3292298

25. Shiva L, Ayachit N, Udachan L, Banagar A, Kolkundi S, Bhairamadagi S. A study on nucleation, growth and grain boundary reflection in thin tin nanofilms. J Phys Conf Ser. 2019;1186(1):1-11. https://doi:10.1088/1742-6596/1186/1/012006

26. Dutta SK, Vandemaele MC. Finite Size Effects in Highly Scaled Ruthenium Interconnects. IEEE Electron Device Lett. 2018;39(2):268-271. https://doi:10.1109/LED.2017.2788889

27. Milosevic E, Kerdsongpanya S, Gall D. The Resistivity Size Effect in Epitaxial Ru(0001) and Co(0001) Layers. IEEE Nanotechnol. 2019;1:1–5. https://doi:10.1109/NANOTECH.2018.8653560

28. Josell D, Brongersma SH, Tokei Z. Size-dependent resistivity in nanoscale interconnects. Annu Rev Mater Res. 2009;39:231-254. https://doi:10.1146/annurev-matsci-082908-145415

29. Bakonyi I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu. Springer Berlin Heidelberg. 2021;136(4): 13360-01303. Https://doi:10.1016/j.mee.2004.07.041

30. Alsoltani KA, Harbbi KA. The Effect of Annealing Temperatures on Cu2O Nanoparticle Structural Properties. Ibn Al-Haitham J Pure Appl Sci. 2023;36(3):148-153. Https://doi.org/10.30526/36.3.3116

31. Palenskis V, Žitkevičius E. Phonon Mediated Electron-Electron Scattering in Metals. World J. Condens. Matter Phys. 2018;8(3):115–129. https://doi:10.1007/s10948-012-1507-3

32. Jasim KA, Fadhil RN. The Effects of Micro Aluminum Fillers in Epoxy Resin on the Thermal conductivity. J Phys Conf Ser. 2018;1003(1):012082. https://doi:10.1007/s10948-012-1507-3

33. Alsoltani KA, Harbbi KA. Effect of the Synthesis Time on Structural Properties of Copper Oxide. Ibn Al-Haitham J Pure Appl Sci.. 2023;36(2):181-198. https://doi.org/ 10.30526/36.1.2891

34. Ahmed ZW, Khadim AI, ALsarraf AHR. The effect of doping with some rare earth oxides on electrical features of ZnO varistor. Energy Procedia. 2019;157(20):909-917. https://doi:10.1016/j.egypro. 2018.11.257

35. Jasim KA, Mohammed LA. The partial substitution of copper with nickel oxide on the Structural and electrical properties of HgBa2 Ca2 Cu3xNix O8+δ superconducting compound. J Phys Conf Ser. 2018;1003(1):012071. https://doi:10.1007/s10948-012-1507-3

36. Choi D. Potential of ruthenium and cobalt as next-generation semiconductor interconnects. J Korean Inst Met Mater. 2018;56(8):605-610. https://doi:10.3365/KJMM.2018.56.8.605

37. Zhao K, Hu Y, Du G, Dong J. Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials, Nanomaterials. 2022;12(10). https://doi:10.3390/nano12101760

Downloads

Published

20-Jan-2025

Issue

Section

Physics

How to Cite

[1]
F. Hanon Almajedi , R. et al. 2025. The Effect of Scattering of Phonons, Size and Grain Boundary on Electrical Properties for Ruthenium Nano Metals. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 1 (Jan. 2025), 153–160. DOI:https://doi.org/10.30526/38.1.3957.