Studying the Change in the Dislocation Density and the Burger Vector when the Temperature Changes Using the Method of Analysis X-Ray Diffraction Patterns
DOI:
https://doi.org/10.30526/38.1.3966Keywords:
X-ray diffraction, lattice strain, crystallite size, Burger vectorAbstract
The current study investigated ways temperature affects the structural and Material features of ZnO. The temperature varied between 300,500 and 700°C. Zinc oxide's physical characteristics were determined using diffraction of x-rays. The patterns of x-ray diffraction revealed the excellent purity, crystalline, and nanoscale nature of the ZnO nanoparticles. size was found and computed using the Halder-Wagner method, in that order. As the temperature of annealing rises, the size of the crystallite grew. Therefore, it was found that the annealing temperature greatly affects structural and morphological characteristics. The specimen was examined to compute physical and microstructural characteristics like lattice strain, dislocation density, additionally burger vector, Results for the dislocation density and Burger vector obtained for 300 °C are (43.7832 * 10-5 (1/nm)², 3.576 * 10-1), for 500°C are (30.6388 * 10-5 (1/nm²),5.3688* 10-1) and for 700°C are. (18.2516* 10-5 (1/nm²),6.263*10-1).
References
Jaleel MT, Harbbi KH. Study of the x-ray diffraction lines of calcium titanate nanoparticle using SSP method and Scherrer method . AIP Conf Proc. 2023;2769(1): 45-56. https://doi.org/10.1063/5.0129557.
Rabiei M, Palevicius A, Monshi A, Nasiri S, Vilkauskas A, Janusas G. Comparing methods for calculating nanocrystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials. 2020;10(9): 23-34. http://dx.doi.org/10.3390/nano10091627.
Sami AM, Harbbi KH. Analysis the average lattice strain in the crystal direction (hkl) in MgO nanoparticles by using modified Williamson-Hall method. AIP Conf Proc. 2022; 2394(1): 12-24. https://doi.org/10.1063/5.0122941.
Surdu VA, Győrgy R. X-ray diffraction data analysis by machine learning methods-a review. Appl. Sci. .2023;13(17): 9992. https://doi.org/10.3390/app13179992.
Mongkolsuttirat K, Buajarern J. Uncertainty evaluation of crystallite size measurements of nanoparticle using X-ray diffraction analysis (XRD). J Phys Conf Ser. 2021; 1719(1):012054. https://doi:10.1088/1742-6596/1719/1/012054.
Wilhelm M, Lotter F, Scherdel C, Schmitt J. Advancing Efficiency in Mineral Construction Materials Recycling: A Comprehensive Approach Integrating Machine Learning and X-ray Diffraction Analysis. Buildings. 2024;14(2):340. https://doi.org/10.3390/buildings14020340.
Yogamalar R, Srinivasan R, Vinu A, Ariga K, Bose AC. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009;149(43-44):1919 -1923. https://doi:10.1016/j.ssc. 2009.07.043.
Deb AK, Chatterjee P. Estimation of lattice strain in alumina-zirconia nanocomposites by X-ray diffraction peak profile analysis. J Theor Appl Phys. 2019;13:(221–229). https://doi.org/10.1007/s40094-019-0338-z.
Kushwaha P, Chauhan P. Microstructural evaluation of iron oxide nanoparticles at different calcination temperatures by Scherrer, Williamson-Hall, Size-Strain Plot and Halder-Wagner methods. phase transitions. 2021;94,(10):731-753. https://doi.org/10.1080/01411594.2021.1969396.
Sen SK, Barman UC, Manir MS, Mondal P, Dutta S, Paul M, Hakim MA. X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv Nat Sci. Nanosci. Nanotechnol. 2020;11(2): 025004. https://doi.org /10.1088/2043-6254/ab8732.
Gholizadeh A, Malekzadeh A, Ghiasi M. Structural and magnetic features of LaO. 7SrO. 3Mn1− xCoxO3 nano-catalysts for ethane combustion and CO oxidation. Ceram Int. 2016;42(5): 5707-5717. https://doi.org/10.1016/j.ceramint.2015.12.101.
Sitdikov VD, Chizhov PS, Murashkin MY, Goidenko AA, Valie RZ. X-ray studies of dynamic aging in an aluminum alloy subjected to severe plastic deformation. Mater Charact. 2015;110:222-227. https://doi.org/10.1016/j.matchar.2015.10.037.
Ravidhas C, Josephine AJ, Sudhagar P, Devadoss A, Terashima C, Nakata K, Sanjeeviraja C. Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: Structural, optical and photocatalytic properties. Mater Sci. Semicond. Process. 2015;30:343-351. https://doi.org/10.1016/j.mssp.2014.10.026.
Gopinath S, Philip J. Preparation of metal oxide nanoparticles of different sizes and morphologies their characterization using small angle X-ray scattering and study of thermal properties. Mater Chem Phys. 2014;145(1-2):213-221. https://doi.org/10.1016/j.matchemphys.2014. 02.005.
Gholizadeh A, Jafari E. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. J. Magn Magn Mater. 2017;422:328-336. https://doi.org/10.1016/j.jmmm.2016.09.029.
Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater Chem Phys. 2020;239:122021. https://doi.org/10.1016/j.matchemphys.2019.122021.
Jahil SS, Mohammed IA, Khazaal AR, Jasim KA, Harbbi KH. Application the Halder–Wagner to Calculation Crystal Size and Micro Strain by X-ray Diffraction Peaks Analysis. NeuroQuantology. 2022;20(1):199-204. https://doi:10.14704/nq.2022.20.1.NQ22074.
Al-Shomar SM, Akl AA, Mansour D, Hedhili F, Aslam A, Shaaban ER, Mahmoud SA. Influence of Mo+ 2 ion concentration on crystallization, microstructure, crystal imperfection and morphology of WO3 sprayed thin films. Mater Res Express. 2022;9(9):096404. https://DOI:10.1088/2053-1591/ac9273.
Kamil MK, Jasim KA. Calculating of crystalline size, strain, and Degree of crystallinity of the compound (HgBa2Ca2Cu3O8+ σ) by different method. IOP Conf Ser Mater Sci Eng. 2020;928(7):072109. https://DOI.10.1088/1757-899X/928/7/072109.
Harbbi KH. Effect of the Synthesis Time on Structural Properties of Copper Oxide. Ibn AL-Haitham J Pure Appl Sci. 2023;36(2):181-190. https://doi.org/10.30526/36.2.3024.
Harbbi KH. The Effect of Annealing Temperatures on Structural Properties of Cu2O Nanoparticles. Ibn Al-Haitham J Pure Appl Sci. 2023;36(3):148-157. https://doi.org/10.30526/36.3.3116.
Disha SA, Hossain MS, Habib ML, Ahmed S. Calculation of crystallite sizes of pure and metals doped hydroxyapatite engaging Scherrer method, Halder-Wagner method, Williamson-Hall model, and size-strain plot. Results Mater. 2024;21:100496. https://doi.org/10.1016/j.rinma.2023.100496.
Izumi F, Ikeda T. Implementation of the Williamson-Hall and Halder-Wagner methods into RIETAN-FP. Doctoral dissertation, Nagoya Institute of Technology. 2015;3:33-38. http://doi.id.nii.ac.jp/1476/00002383/.
Jalil MT, Harbbi KH. Using the Size Strain Plot Method to Specify Lattice Parameters. Ibn Al-Haitham J Pure Appl Sci. 2023;36(1):123-129. https://doi.org/10.30526/36.1.2891.
Abdul-Jabbar SS, Harbbi K. Studying the relationship between the number of unit cells and the dislocation density of a crystal through the x-ray diffraction pattern of barium oxide nanoparticles. AIP Conf Proc, AIP Publishing. 2023;3018(1). https://doi.org/10.1063/5.0172073.
Abbas SB, Harbbi KH. Elimination of the broadening in X-ray diffraction lines profile for nanoparticles by using the analysis of diffraction lines method. AIP Conf Proc., AIP Publishing. 2022;2386(1). https://doi.org/10.1063/5.0067983.
Harbi KH, Abd AN. Preparation and characterization of copper oxide by adding turmeric powder. J Phys Conf Ser. IOP Publishing. 2021;1879(3):032084. https://DOI.10.1088/1742-6596/1879/3/032084.
Deb AK, Chatterjee P. Estimation of lattice strain in alumina-zirconia nanocomposites by X-ray diffraction peak profile analysis. J Theor Appl Phys. 2019;13:221-229. https://doi.org /10.1007/s40094-019-0338-z.
Scardi P, Leoni M, Delhez R. Line broadening analysis using integral breadth methods: a critical review. J Appl Crystallogr. 2004;3(37):381-390. https://doi.org/10.1107/S0021889804004583.
Epp J. X-ray diffraction (XRD) techniques for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. Elsevier. 2016;23(5):81–124. https://doi.org/10.1016/B978-0-08-100040-3.00004-3.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms