Preparation and Study Annealing Effect on Structure and Optical Properties of ZnIn2(Se0.8Te0.2)4 Thin Film

Authors

DOI:

https://doi.org/10.30526/38.1.3982

Keywords:

Chalcopyrite semiconductors, XRD, band gaps ZnIn2(Se1-0.2Te0.2)4, thin film

Abstract

The thermal evaporation technique is used to investigate the structural and optical properties of ZnIn2(Se1-0.2Te0.2)4 (ZIST) chalcopyrite semiconductors. ZnIn2(Se0.8Te0.2)4 thin films with a thickness of 500 nm are taken into consideration, and the effect of annealing at various temperatures ranged from R.T, 373, 473 K. (ZIST) Thin film is widely regarded as a remarkable semiconductor material for the development of second-generation solar cells. ZnIn2(Se0.8Te0.2)4 films are polycrystalline with excellent stoichiometric composition, as shown by XRD and AFM investigations. According to a structural study, annealing the films after they were deposited increased the average grain size and crystallite size after annealing, as well as one of the favored orientations of the polycrystalline phase is along the (112) direction. The wavelength range used to determine these films' optical characteristics was 400 nm–1000 nm. Semiconductors ZnIn2(Se1-0.2Te0.2)4 have direct band gaps of 1.7, 1.65, and 1.6 eV respectively. The calculated optical constant includes the refractive index. extinction coefficient. real and imaginary components of dielectric constant.

Author Biographies

  • Bushra H.Hussein, Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

  • Husham Kamil Mahmood, Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    .

References

Mohanty A, Priyambada A, Parida P, Ganguli B. Structural and electronic properties of Mn substituted ZnIn2Se4 chalcopyrite type semiconductor. Mater Today Proc. 2022;62 Part 2:1122–5. https:// doi.org/10.1016/j.matpr.2022.04.323

Lopez-Rivera SA, Martinez L, Briceno-Valero JM, Echeverria R, De Armengol GG. Growth and photoconductivity properties of CdIn2Te4 and Cd0.83In0.34Te1.34. Prog Cryst Growth Charact. 1984;10:297–305. https://doi.org/10.1016/0146-3535(84)90048-0

Ouahrani T, Reshak AH, Khenata R, Baltache H, Amrani B, Bouhemadou A. Structural, electronic, linear, and nonlinear optical properties of ZnCdTe2 chalcopyrite. Phys Status Solidi Basic Res. 2011;248(3):712–8. http://dx.doi.org/10.1016/j. comm atsci. 2010. 09.030

Dhruv DK, Patel BH., Agrawal N, Banerjee R, Dhruv SD, Patel PB. Synthesis, electrical transport mechanisms and photovoltaic characteristics of p-ZnIn2Se4/n-CdTe thin film heterojunction. J Mater Sci Mater Electron. 2022;33(31):24003–15. https://doi.com/ article/10 .1007 /s10854-022-08755-z

Cai Y, Luo F, Guo Y, Guo F, Shi W, Yang S. Near-Infrared Light Driven ZnIn2S4-Based Photocatalysts for Environmental and Energy Applications: Progress and Perspectives. Molecules. 2023;28(5):2-15. https://doi.org/10.3390%2Fmolecules28052142

Dhruv DK, Patel BH. Fabrication and electrical characterization of Al/p-ZnIn2Se4 thin film Schottky diode structure. Mater Sci Semicond Process. 2016;54:29–35. http://dx. doi.org/10.1016/j. mssp. 2016.06.012

Lu Y, Jia X, Ma Z, Li Y, Yue S, Liu X. W5+–W5+ Pair Induced LSPR of W18O49 to Sensitize ZnIn2S4 for Full‐Spectrum Solar‐Light‐Driven Photocatalytic Hydrogen Evolution. Adv Funct Mater. 2022;32(35):2203638. https://doi.org/10.1002/adfm. 202203 638

El-Nahass MM, Attia AA, Salem GF, Ali HAM., Ismail MI. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films. Phys B Condens Matter. 2013;425:23–30. http://dx.doi.org/10.1016/j.physb.2013.05.012

Yadav SP, Shinde PS, Rajpure KY, Bhosale CH. Preparation and properties of spray-deposited ZnIn2Se4 nanocrystalline thin films. J Phys Chem Solids. 2008;69(7):1747–52. https://doi .org/10. 1016/j.jpcs.2007.12.012

Choe SH. Optical energy gaps of undoped and Co-doped ZnIn2Se4 single crystals. Curr Appl Phys. 2009;9(1):1–3. https://doi.org/10.1016/j.cap.2007.10.083

Babu P, Ramakrishna Reddy KT, Miles RW. Precursor concentration effect on the properties of ZnIn2Se4 layers grown by chemical bath deposition. Energy Procedia. 2011;10:177–81. https://doi. org /10. 1016/j. egypro.2011.10.173

Bhalerao AB, Wagh BG, Shinde NM, Jambure SB, Lokhande CD. Crystalline zinc indium selenide thin film electrosynthesis and its photoelectrochemical studies. Energy Procedia. 2014;54:549–56. https://doi.org/10.1016/j.egypro.2014.07.296

Trah HP, Krämer V. Crystal structure of zinc indium selenide, ZnIn2Se4. Zeitschrift für Krist. 1985;173(3–4):199–203. https://doi/10.1524/ zkri. 1985.173. 14.199/pdf

Mamedova IA. Photoluminescence properties of ZnIn2Se4. Azerb J Phys. 2021;27(2):8–11.

El-Nahass MM, Attia AA, Ali HAM, Salem GF, Ismail MI. Nature of electrical transport properties of nanocrystalline ZnIn2Se4 thin films. Chaos, Solitons & Fractals. 2017;95:52–6. https://doi.org/ 10.1016/j.chaos.2016.12.005

Bozhko VV, Novosad OV, Parasyuk OV, Vainorius N, Sakaviciues A, Janonis V. Specific features of the low-temperature conductivity and photoconductivity of CuInSe2-ZnIn2Se4 alloys. Semiconductors. 2014;48(6):727–732. https://doi .org/10.1134/S10637826 14060086

Bozhko VV, Novosad AV, Parasyuk OV, Khyzhun OY, Vainorius N, Nekro A. Electrical properties and electronic structure of Cu1-xZnxInSe2 and Cu1-xZnxInS2 single crystals. J Phys Chem Solids. 2015;82:42–9. https: //doi.org/ 10.1016/ j.jpcs.2015.02.012

Yu F, Meng X, Cheng J, Liu J, Yao Y, Li J. Novel n-type thermoelectric material of ZnIn2Se4. J Alloys Compd. 2019;797:940–4. https://doi.org/10.1016/j.jallcom.2019.05.238

Sampath H, Jayaraj TI, Oommen R, Parthasarathy UR. Preparation and characterization of ZnIn2S4 thin film. Emerg Mater Res. 2015;4(2):286–9. https://doi.org /10.1680 /jemmr. 15.00023

Madelung O, Rössler U, Schulz M. Ternary Compounds, Organic Semiconductors. Landolt-börnstein-gr III Condens Matter; 2000. ISBN: 9783540667810

Khudayer IH, Hussien BH. Study of Some Structural and Optical Properties of AgAlSe2 Thin Films. I HJ PAS. 2016;29(2):41–51. https://www.iasj .net/iasj/ download/ d06fb 3c 7d8db8a28

Al-Maiyaly BKH. characterization of n-CdO: Mg/p-Si heterojunction dependence on annealing temperature. Ibn AL-Haitham J Pure Appl Sci. 2017;29(3):14–25. https://jih.uobaghdad. Edu .iq/ index.php/j/article/view/8

Hübschen G, Altpeter I, Tschuncky R, Herrmann HG. Materials characterization using nondestructive evaluation (NDE) methods. 2nd ed. Woodhead publishing; 2016. ISBN: 9780081000571

Athab RH, Hussein BH. Fabrication and investigation of zinc telluride thin films. Chalcogenide Lett. 2023;20(7):477–85. https://doi.org/10.15251/CL.2023.207.477

Hussein BH, Khudayer IH, Mustafa MH, Shaban AH. Effect of V, In and Cu doping on properties of p-type ZnSe/Si heterojunction solar cell. Prog Ind Ecol An Int J. 2019;13(2):173–86. https://doi.Org /10.1504/PIE.2019.099358

Hussein BH, Hassun HK. GROWTH AND OPTOELECTRONIC PROPERTIES OF p-CuO:Al/n-Si HETEROJUNCTION. J Ovonic Res. 2020;16(5):267–71. https://chalcogen.ro/ 267-Maiyaly BKH .pdf

Hussein BH, Hassun HK, Maiyaly BK, Aleabi SH. Effect of copper on physical properties of CdO thin films and n-CdO: Cu/p-Si heterojunction. J Ovonic Res. 2022;18:37–42. https://doi.org/10.15 251/JOR.2022.181.37

Sze SM, Li Y, Ng KK. Physics of semiconductor devices. 3rd ed. John Wiley & sons; 2021. ISBN: 9780470068328, https://doi.org/10.1002/0470068329.

Schroder DK. Semiconductor material and device characterization. 3rd ed. John Wiley & Sons; 2005. ISBN:9780471749097, https://doi.org/10.1002/0471749095.

Hussein WS, Fadhil AA, Aadim KA. Influence of laser energy and annealing on structural and optical properties of CdS films prepared by laser-induced plasma. Iraqi J Sci. 2020;61(6):1307–12. https://doi.org/10.24996/ijs.2020.61.6.8

Kim K, Ahn SK, Choi JH, Yoo J, Eo YJ, Cho JS. Highly efficient Ag-alloyed Cu (In, Ga) Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy. 2018;48:345–52. https://doi.org/10.1016/j.nanoen.2018.03.052

Ahmed GS, Hussein BH, Hassun HK, Salman EMT, Athab RH. Fabrication and Improvement of Optoelectronic Properties of Copper Chalcogenide Thin Films. Iraqi J Appl Phys. 2023;19(4):223–8. https://doi.www.iasj.net/iasj/article/284872

Tigau N, Ciupina V, Prodan G, Rusu GI, Gheorghies C, Vasile E. The influence of heat treatment on the electrical conductivity of antimony trioxide thin films. J Optoelectron Adv Mater. 2003;5(4):907–12. https://doi.old.joam.inoe.ro/arhiva/pdf5_4/Tigau.pdf

Sobhi SN, Hussein BH. Study the Influence of Antimony Dopant and Annealing on Structural, Optical and Hall Parameters of AgInSe2 Thin Film. Ibn AL-Haitham J Pure Appl Sci. 2022;35(3):16–24. https://doi.org/10.30526/35.3.2824

Athab RH, Hussein BH. Growth and Characterization of Vacuum Annealing AgCuInSe2 Thin Film.

Ibn AL-Haitham J Pure Appl Sci. 2022;35(4):45–54. https://doi.org /10 .30526/ 35.4.2868

Downloads

Published

20-Jan-2025

Issue

Section

Physics

How to Cite

[1]
Hussein, B.H. and Kamil Mahmood, H. 2025. Preparation and Study Annealing Effect on Structure and Optical Properties of ZnIn2(Se0.8Te0.2)4 Thin Film. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 1 (Jan. 2025), 174–185. DOI:https://doi.org/10.30526/38.1.3982.