Exploring the Variation of Urbach Energies Between Anatase and Rutile Phases of TiO2 Nanoparticles in Polymer-Based Hybrid Composites

Authors

DOI:

https://doi.org/10.30526/38.1.3986

Keywords:

Titanium dioxide nanoparticle, PVA, PEG, PVP, Urbach energy, polymer blend.

Abstract

Titanium dioxide (TiO2) nanoparticles were combined with a mixture of polymers: polyvinyl alcohol (PVA), polyethylene glycol (PEG), and polyvinylpyrrolidone (PVP). TiO2 nanoparticles were formed by the sol–gel process, and nanocomposites were prepared with concentrations 1, 5, 10, 15, 20, and 25 wt% of TiO2 nanoparticles after subjecting them to a calcination process at temperatures of about 400 °C and 700 °C, and with polymer blends of different concentrations (PVA various wt%, PEG constant wt%, and PVP constant wt%). A UV–Vis spectrometer was used to determine the optical constants of the prepared samples, namely, the absorption coefficients and Urbach energies. It was observed that the Urbach energies were highest for the samples with calcination temperature 400 °C and 20 wt% TiO2 nanoparticles blended with PVA 65 wt%, PEG 10 wt%, and PVP 5 wt%. The Urbach energy for the PVA–PEG–PVP polymer blend was 0.32 eV. For the anatase phase (calcination at 400 °C), the Urbach energy was in the range of 0.41–5.55 eV for PVA–PEG–PVP–TiO2 nanocomposites, and for the rutile phase (calcination at 700 °C) it was in the range of 0.31–1.94 eV. The findings have important ramifications for applications of these nanocomposites as reusable photocatalysts, by providing a means of extending their useful life.

Author Biographies

  • Rasheed L. Jawad , Al-Karkh University of Science, Baghdad, Iraq.

    .

  • Raghad S. Abbas, Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

References

Jawad RL, Abbas RS. Preparation of titanium dioxide NPs and study of optical parameters as a polymer photocatalytic film. J Theor Appl Phys. 2024;30(6):829-835. https://doi.org/10.57647/j.jtap.2024.si-AICIS23.11.

Xiong L, Tang J. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater. 2021;11(8):2003216. https://doi.org/10.1002/aenm.202003216.

Dhatarwal P, Sengwa RJ. Poly (Vinyl Pyrrolidone) Matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 Nanofillers Comprise Biodegradable Nanocomposites of Controllable Optical Properties for Optoelectronic Applications. Optik. 2021;241:167215. https://doi.org/10.1016/j.ijleo.2021.167215.

Akshay VR, Arun B, Mandal G, Vasundhara M. Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method. Phys Chem Chem Phys. 2019;21(24):12991-13004. https://doi.org/10.1039/C9CP01351B.

Abd-Elnaiem AM, Salman OS, Hakamy A, Hussein SI. Mechanical characteristics and thermal stability of hybrid epoxy and acrylic polymer coating/nanoclay of various thicknesses. J Inorg Organomet Polym Mater. 2022;32(6):2094-2102. https://doi.org/10.1007/s10904-022-02270-8.

Mohammed AA, Ali NA, Abdullah AQ, Hussein SI, Hakamy A, Abd-Elnaiem AM, Shamekh AMA. Effect of graphene nanoplates and multi-walled carbon nanotubes doping on structural and optical properties of polyvinyl chloride membranes for outdoor applications. J Mater Sci Mater Electron. 2024;35(6):440. https://doi.org/10.1007/s10854-024-12132-3.

Shehab AA, Mustafa MH, Majeed SG. Effect of annealing temperature on the structural and optical properties of CdSe: 1% Ag thin films. World Sci News. 2016;45(2):185-195.

Mohd Nurazzi N, Asyraf MM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Sapuan SM. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers. 2021;13(7):1047. https://doi.org/10.3390/polym13071047.

Cordoba A, Saldias C, Urzúa M, Montalti M, Guernelli M, Focarete ML, Leiva A. On the versatile role of electrospun polymer nanofibers as photocatalytic hybrid materials applied to contaminated water remediation: A brief review. Nanomaterials. 2022;12(5):756. https://www.mdpi.com/2079-4991/12/5/756#.

Jasim KA, Thejeel MA, Al-Khafaji RS. The Effect of Doping by Sr on the Structural, Mechanical and Electrical Characterization of La1Ba1-xSrxCa2Cu4O8.5+δ. Ibn Al-Haitham J Pure Appl Sci. 2014;27(1):170-175.

Lokanathan M, Acharya PV, Ouroua A, Strank SM, Hebner RE, Bahadur V. Review of nanocomposite dielectric materials with high thermal conductivity. Proc IEEE. 2021;109(8):1364-1397. doi: 10.1109/JPROC.2021.3085836.

Al-Khafaji RS, Mohammed FQ. Effect of catalysts on BN nanoparticles production. J Mater Res Technol. 2020;9(1):868-874. https://doi.org/10.1016/j.jmrt.2019.11.026.

Harbbi KH. The Effect of Annealing Temperatures on Structural Properties of Cu2O Nanoparticles. Ibn Al-Haitham J Pure Appl Sci. 2023;36(3):148-157. https://doi.org/10.30526/36.3.3116.

Alsaif NA, Atta A, Abdeltwab E, Abdel-Hamid MM. Fabrication, surface characterization and electrical properties of hydrogen-irradiated nanocomposite materials. Surf Innov. 2024;12(3-4):202-211. https://doi.org/10.1680/jsuin.23.00030.

Haider HM, Jasim KA. Effect of Composition and Dielectric Properties for (YBCO) superconductor compound in different preparation methods. Ibn Al-Haitham J Pure Appl Sci. 2020;33(1):17-30. doi: 10.30526/33.1.2372

Montallana ADS, Vasquez MR Jr. Fabrication of PVA/Ag-TiO2 Nanofiber Mats for Visible-Light-Active Photocatalysis. Results Phys. 2021;25:104205. https://doi.org/10.1016/j.rinp.2021.104205.

Al-Khafaji RSA. Synthesis and some Features of Three-Phases Polymer/Metal/Ceramic Multilayers Nanocomposite. Ibn Al-Haitham J Pure Appl Sci. 2020;33(4):10-17. doi:10.30526/33.4.2521.

Al-Khafaji RSA. Synthesis of Blend Polymer (PVA/PANI)/Copper (1) Oxide Nanocomposite: Thermal Analysis and UV-Vis Spectra Specifications. Iraqi J Sci. 2021:3888–3900. DOI: 10.24996/ijs.2021.62.11.10.

Al-Khafaji RSA, Jasim KA. Dependence the microstructure specifications of earth metal lanthanum La substituted Bi2Ba2CaCu2-XLaXO8+δ on cation vacancies. AIMS Mater Sci. 2021;8(4). DOI: 10.3934/matersci.2021034.

Ibrahim FH, Mahmood OA. Preparation of PVA/TiO2 Nanocomposite Films with Various TiO2 Phases by Sol–Gel Technique. Acad Sci J. 2022;18(4). https://dx.doi.org/10.24237/djps.1804.609B.

Kamal A, Ashmawy M, Algazzar AM, Elsheikh AH. Fabrication techniques of polymeric nanocomposites: A comprehensive review. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(9):4843-4861. https://doi.org/10.1177/09544062211055662.

Hussien MS, Shenouda SS, Parditka B, Csík A, Erdélyi Z. Enhancement of Urbach's energy and non-lattice oxygen content of TiO1.7 ultra-thin films for more photocatalytic activity. Ceram Int. 2020;46(10):15236-15241. https://doi.org/10.1016/j.ceramint.2020.03.062.

Riungu GG, Mugo SW, Ngaruiya JM, John GM, Mugambi N. Optical band energy, Urbach energy and associated band tails of nano crystalline TiO2 films at different annealing rates. Am J Nanosci. 2021;7(1):28-34. https://doi.org/10.11648/j.ajn.20210701.15

Choudhury B, Choudhury A. Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and rutile phases of TiO2 nanoparticles. Phys E Low-Dimens Syst Nanostruct. 2014;56:364–371. https://doi.org/10.1016/j.physe.2013.10.014.

Wang J, Xin Z, Hao H, Wang Q, Sun X, Liu S. Reinforced dielectric properties and energy storage performance of BaO–Na2O–Nb2O5–SiO2–TiO2–ZrO2 dielectric glass ceramics. Ceram Int. 2024;50(10):17283-17290. https://doi.org/10.1016/j.ceramint.2024.02.207.

Varadwaj PR, Dinh VA, Morikawa Y, Asahi R. Polymorphs of titanium dioxide: An assessment of the variants of projector augmented wave potential of titanium on their geometric and dielectric properties. ACS Omega. 2023;8(24):22003-22017. https://doi.org/10.1021/acsomega.3c02038.

Jaafar HK, Hashim A, Rabee BH. Fabrication and unraveling the morphological, structural, and dielectric features of PMMA-PEO-SiC–BaTiO3 promising quaternary nanocomposites for multifunctional nanoelectronics applications. J Mater Sci Mater Electron. 2024;35(2):128. https://doi.org/10.1007/s10854-024-11924-x.

Zeribi F, Attaf A, Derbali A, Saidi H, Benmebrouk L, Aida MS, et al. Dependence of the physical properties of titanium dioxide (TiO2) thin films grown by sol-gel (spin-coating) process on thickness. ECS J Solid State Sci Technol. 2022;11(2):023003. https//10.1149/2162-8777/ac5168.

Dubey RS, Singh S. Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. 2017;7:1283–1288. https://doi.org/10.1016/j.rinp.2017.03.014.

Abdullah OG, Mustafa BS, Bdewi SF, Ahmed HT, Mohamad AH, Suhail MH. Improvement of the structural and electrical properties of the proton-conducting PVA-NH4NO3 solid polymer electrolyte system by incorporating nanosized anatase TiO2 single-crystal. J Electron Mater. 2023;52(6):3921-3930. https://doi.org/10.1007/s11664-023-10399-6.

Downloads

Published

20-Jan-2025

Issue

Section

Physics

How to Cite

[1]
L. Jawad , R. and S. Abbas, R. 2025. Exploring the Variation of Urbach Energies Between Anatase and Rutile Phases of TiO2 Nanoparticles in Polymer-Based Hybrid Composites. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 1 (Jan. 2025), 186–196. DOI:https://doi.org/10.30526/38.1.3986.