Assessing Landsat Processing Levels and Support Vector Machine Classification
DOI:
https://doi.org/10.30526/38.1.3992Keywords:
support vector machine, remote sensing, atmospheric correction, Landsat 9, classification.Abstract
The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conversely, when using the maximum-likelihood classifier, the highest accuracy (83.06%) was achieved with FLAASH. The results demonstrate significant variations in accuracies for different land cover classes, which emphasizes the importance of per-class accuracy. The results highlight the critical role of preprocessing techniques and classifier selection in optimizing the classification processes and land cover mapping accuracy for remote sensing geospatial applications. Finally, the actual differences in classification accuracy between processing levels are larger than those given by the confusion matrix. So, the consideration of alternative evaluation methods with the absence of reference images is critical.
References
Liu X, He J, Yao Y, Zhang J, Liang H, Wang H, Hong Y. Classifying urban land use by integrating remote sensing and social media data. Int J Geogr Inf Sci. 2017;31(8):1675-1696. https://doi.org/10.1080/13658816.2017.1324976
Mahdi AS. The Land Use and Land Cover Classification on the Urban Area. Iraqi J Sci.2022; 63(10):4609-4619. https://doi.org/10.24996/ijs.2022.63.10.42
Chipman JW, Lillesand TM, Schmaltz JE, Leale JE, Nordheim MJ. Mapping lake water clarity with Landsat images in Wisconsin, USA. Can J Remote Sens. 2004;30(1):1-7. https://doi.org/10.5589/m03-047
Lamquin N, Woolliams E, Bruniquel V, Gascon F, Gorroño J, Govaerts Y, Leroy V, Lonjou V, Alhammoud B, Barsi JA. An inter-comparison exercise of Sentinel-2 radiometric validations assessed by independent expert groups. Remote Sens Environ. 2019;233:111369. https://doi.org/10.1016/j.rse.2019.111369
Pinto C, Ponzoni F, Castro R, Leigh L, Mishra N, Aaron D, Helder D. First in-flight radiometric calibration of MUX and WFI on-board CBERS-4. Remote Sens. 2016;8(5):405. https://doi.org/10.3390/rs8050405.
Hagolle O, Huc M, Pascual DV, Dedieu G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 2015;7(3):2668-2691. https://doi.org/10.3390/rs70302668
Maher A, Ghazal NK. Removing atmospheric effects for Multi spectral images (OLI 8) using ATCOR model. IOP Conference Series: Mater Sci Eng. . 2020 March; 757(1):012072. IOP Publishing. https://doi.org/10.1088/1757-899X/757/1/012072
Naji TA. New multispectral images classification method based on MSR and Skewness implementing on various sensor scenes. Iraqi J Sci .2015;56(3A):2104-2114. https://ijs.uobaghdad. edu.iq/index.php/eijs/article/view/9967
Gumma MK, Thenkabail PS, Hideto F, Nelson A, Dheeravath V, Busia D, Rala A. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sens. 2011;3(4):816-835. https://www.mdpi.com/2072-4292/3/4/816
Townshend JR, Masek JG, Huang C, Vermote EF, Gao F, Channan S, Sexton JO, Feng M, Narasimhan R, Kim D, Song K, Song D, Peng Song X, Noojipady P, Tan P, Hansen MC, Li M. Wolfe R. E. Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges. Int J Digit Earth. 2012;5(5):373-397. https://doi.org/10.1080 /17538947.2012.713190
Crawford CJ, Roy DP, Arab S, Barnes C, Vermote E, Hulley G, Gerace A, Choate M, Engebretson C, Micijevic E, Schmidt G, Anderson C, Anderson M, Bouchard M, Cook B, Dittmeier R, Howard D, Jenkerson C, Kim M, Kleyians T, Maiersperger T, Mueller C, Neigh C, Owen L, Page B, Pahlevan N, Rengarajan R, Roger JC, Sayler K, Scaramuzza P, Skakun S, Yan L, Zhang HK, Zhu Z, Zahn S. The 50-year Landsat collection 2 archive. Sci Remote Sens.. 2023;8:100103. https://doi.org/10.1016/j.srs.2023.100103
KC M, Leigh L, Pinto CT, Kaewmanee M. Method of Validating Satellite Surface Reflectance Product Using Empirical Line Method. Remote Sens. 2023;15(9):2240. https://doi.org/10.3390/rs15092240
Jin Y, Hao Z, Huang H, Wang T, Mao Z, Pan D. Evaluation of LaSRC aerosol optical depth from Landsat-8 and Sentinel-2 in Guangdong-Hong Kong-Macao greater bay area, China. Atmos Environ. 2022;280:119128. https://doi.org/10.1016/j.atmosenv.2022.119128
Muchsin F, Pradono KA, Prasasti I, Dianovita D, Ulfa K, Veronica KW, Novresiandi DA, Ibrahim A. Effect of atmospheric correction algorithm on landsat-8 and sentinel-2 classification accuracy in paddy field area Int J Remote Sens Earth Sci. 2023;20(1):58-66. http://dx.doi.org/10.30536/j.ijreses.2023.v20.a3845
Abdulwahab RA, Al-Ani LA, Shaban AH. Hyperspectral pansharpening improvement using MNF transformation. In: AIP Conf Proc. 2023 November; 3018(1). AIP Publishing. https://doi.org/10.1063/5.0171978
Pohl, C, Van Genderen JL. Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens. 2010;19(5),823-854.https://doi.org/10.1080/014311698215748
Ali SM, Mahdi AS, Tawfeeq RJ, Naji TA. Research Address: New Multispectral Image Classification Methods Based on Scatterplot Technique. Proceeding of 3rd scientific conference of the College of Science. University of Baghdad, Iraqi J Sci. 2009 March;773-780.
Naji TA, Hatem AJ. New adaptive satellite image classification technique for al Habbinya region west of Iraq. Ibn Al-Haitham J Pure Appl Sci.. 2013;26(2):143-149. https://jih.uobaghdad.edu.iq/index.php/j/article/view/494
Romaszewski M, Głomb P, Cholewa M. Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach. ISPRS J Photogramm Remote Sens. 2016;121;60-76. https://doi.org/10.1016/j.isprsjprs.2016.08.011
Abduljabbar HM, Naji TA. separating the terrain cover of iraqi marshes region usinq new satellite band combination. Iraqi J Agric Sci 2020;51(6):1504-1516. https://doi.org/10.36103/ijas.v51i6.1178
De Jong SM, Van der Meer FD. Remote sensing image analysis: including the spatial domain. Springer Science & Business Meda. 2021;236(3):1-19.
Pal M, Foody GM. Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens. 2010;48(5):2297-2307. https://doi.org/10.1109/TGRS.2009.2039484
Su J, Yi D, Liu C, Guo L, Chen WH. Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons. Sensors. 2017;17(12):2726. https://doi.org/10.3390/s17122726
Zhang T, Su J, Liu C, Chen WH, Liu H, Liu G. In Band selection in sentinel-2 satellite for agriculture applications. 23rd Int Conf Autom Comput.. 2017;1-6. https://doi.org /10.23919/IConAC.2017.8081990
Lin C, Wu CC, Tsogt K, Ouyang YC, Chang CI. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf Process Agric. 2015;2(1):25-36. https://doi.org/10.1016/j.inpa.2015.01.003
Prieto-Amparan JA, Villarreal-Guerrero F, Martinez-Salvador M, Manjarrez-Domínguez C, Santellano-Estrada E, Pinedo-Alvarez A. Atmospheric and radiometric correction algorithms for the multitemporal assessment of grasslands productivity. Remote Sens. 2018;10(2):219. Available from: https://doi.org/10.3390/rs10020219
Lhissou R, El Harti A, Maimouni S, Adiri Z. Assessment of the image-based atmospheric correction of multispectral satellite images for geological mapping in arid and semi-arid regions. Remote Sens Appl: Soc Environ. 2020; 20: 100420. https://doi.org/10.1016 /j.rsase.2020.100420
Al-Doski J, Hassan FM, Norman M, Najim AA. Interaction of image fusion techniques and atmospheric correction for improve SVM accuracy. Earth Sci Informatics. 2022;15(4):2673-2687. https://doi.org/10.1007/s12145-022-00884-7
Rahman MM, Robson A. Integrating Landsat-8 and sentinel-2 time series data for yield prediction of sugarcane crops at the block level. Remote Sens. 2020;12(8):1313. https://doi/10.3390/rs12081313
Maciel DA, Pahlevan N, Barbosa CCF, de Novo EM, Paulino RS, Martins VS, Vermote E, Crawford CJ. Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud‐based analysis. Limnol Oceanogr Lett. 2023; 8(6):850-858. https://doi.org/10.1002 /lol2.10344
Obaid OH, Abdulameer IMA. Turbidity Changes in the Tigris River Using Satellite Data During the COVID-19 Related Lockdown. Ibn Al-Haitham J Pure Appl Sci. 2022;35(4): 76-82. https://doi.org/10.30526/35.4.2874
Niroumand-Jadidi M, Bovolo F, Bresciani M, Gege P, Giardino C. Water quality retrieval from landsat-9 (OLI-2) imagery and comparison to sentinel-2. Remote Sens. 2022;14(18):4596. https://doi.org/10.3390/rs14184596
Micijevic E, Barsi J, Haque MO, Levy R, Anderson C, Thome K, Czapla-Myers J, Helder D. Radiometric performance of the Landsat 9 Operational Land Imager over the first 8 months on orbit. In Earth Observing Systems XXVII. 2022 September; 12232: 249-256. SPIE.
Choate MJ, Rengarajan R, Storey JC, Lubke M. Landsat 9 geometric characteristics using underfly data. Remote Sens. 2022;14(15):3781. https://doi.org/10.3390/rs14153781
Wulder MA, Roy DP, Radeloff VC, Loveland TR, Anderson MC, Johnson DM, Healey S, Zhu Z, Scambos TA, Pahlevan N, Cook BD. Fifty years of Landsat science and impacts. Remote Sens Environ.2022;280:113195.https://doi.org/10.1016/j.rse.2022.113195
Masek JG, Wulder MA, Markham B, McCorkel J, Crawford CJ, Storey J, Jenstrom DT. Landsat 9: Empowering open science and applications through continuity. Remote Sens Environ.. 2020;248:111968. https://doi.org/10.1016/j.rse.2020.111968
Mohammed MA, Naji TA, Abduljabbar HM. The effect of the activation functions on the classification accuracy of satellite image by artificial neural network. Energy Procedia. 2019;157:164-170. https://doi.org/10.1016/j.egypro.2018.11.177
Kaduhm HS, Abduljabbar HM. Studying the classification of texture images by K-means of co-occurrence matrix and confusion matrix. . Ibn Al-Haitham J Pure Appl Sci.2023;36(1):113-122. https://doi.org/10.30526/36.1.2894
Majed M, AbdulJabbar HM. The Change in the Land Cover of Mahmudiyah City in Iraq for the Last Three Decades. . Ibn Al-Haitham J Pure Appl Sci. 2022;35(3):44-55. https://doi.org/10.30526/35.3.2831
Khudair BH, Ali SK, Jassim D. T. Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq. J Eng. 2018;24(5):113-123. https://doi.org/10.31026/j.eng.2018.05.08
Suhaili RH, Nasser NO. Water quality indices for Tigris river in Baghdad city. J Eng. 2008;14(03):2656-2668. https://doi.joe.uobaghdad.edu.iq.
Saleh S. A. Impact Of Urban Expansion On Surface Temperature In Baghdad, Iraq Using Remote Sensing And Gis Techniques. Al-Nahrain J Sci 2010;13(1):48-59. https://doi.org/10.22401/JNUS.13.1.07
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms