Production of Californium-252 by Using Reverse Reaction Technology
DOI:
https://doi.org/10.30526/38.1.4008Keywords:
cross sections , nuclear reactions , radioisotopes, energy, reverse reactionAbstract
In the current work, Calculate cross sections for 252Cf (α,3n)253Fm reaction Use of interpolation and cross-section sampling published in the international literature to select the appropriate interaction of ground-level energies in a computer-based program (MATALAB-17.0) , in steps of energies (0.2 Million electron volts). Given the importance of the 252Cf isotope and its entry into the industrial and medical fields, there was a need to determine the energy of the incident neutron to produce this isotope, relying on the masses of the entering and leaving particles and the values of angular momentum to obtain an equation and according to the theory of the opposite reaction. The reaction cross sections (253Fm (3n,α) 252Cf) were calculated using the opposite reaction theory for the energy range (3.9789-14.538)MeV. The results show that the probability values increase with the neutron's energy smoothly. The results show that cross-section values are almost constant for the energy range limited to (8.5-14)MeV. The results were plotted and tabulated using MATLAB 17.0. Also, the values obtained for the reaction cross sections 253Fm (3n,α) 252Cf through which the CF is produced. Semi-empirical equations were obtained for the relationship between energy and cross-section.
References
1. PODGORŠAK, Ervin B. Radiation physics for medical physicists. Berlin: Springer, 2006.
2. Chaidir P, Daya AS, Indra S, Fany T, Ahid N, Fernanto R, Anung P. Scaled-up production of 131I radioisotope using dry distillation method for radiopharmaceutical application. J Phys Conf Ser 2022;2193(1). IOP Publishing https://10.1088/1742-6596/2193/1/012020.
3. Szkliniarz K, Sitarz M, Walczak R, Jastrzębski J, Bilewicz A, Choiński J, Zipper W. Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot. 2016;118:182-189 https://doi.org/10.1016/j.apradiso.2016.07.001.
4.Schlyer DJ, Van den Winkel P, Ruth TJ, Vora MM, Pillai M, Haji-Saeid M. Cyclotron produced radionuclides: Principles and practice. IAEA Technical Reports Series. 2008;465.
5. Qaim SM., Spahn I., Scholten B., Neumaier B. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim Acta. 2016;104(9):601-624. https:// 10.1515/ract-2015-2566.
6. Acylo A, editor. Cyclotron produced radionuclides—physical characteristics and production methods. IAEA. 2009.
7. Henriksen G, Messelt S, Olsen E, Larsen RH. Optimization of cyclotron production parameters for the 209Bi (α, 2n) 211At reaction related to biomedical use of 211At. Appl Radiat Isot. 2001;54(5):839-844 https://10.1016/s0969-8043(00)00346-8.
8. Meyerhof WE, Valk HS. Elements of nuclear physics. 1967;2314: 233-246.
9. Ebrahiem SA, Sarsam MN, Youhana HM, Abd-Al-Hameed NT. Determining of cross-sections for 16O (n, α) 13C reaction from cross-sections of 13C (α, n) 16O for the ground state. Ibn Al-Haitham J Pure Appl Sci. 2017;26(1):109-115.
10. Ebrahiem SA, AL-khalidi SH. Interaction Samarium and Holmium with Charged ed Particles (Alpha particles). Mustansiriyah J Sci Educ.2016;17(5):399-414.
11. Youhana HM, Sarsam MN, Ebrahiem SA. Study of Cross Sections for 10 Li 10 Reaction From Cross Sections of Li a, n) Reaction Using the Reciprocity Theory for the Ground State. Ibn Al-Haitham J Pure Appl Sci. 2009;22(1):(1609-4042)
12. Ali TA, Ebrahiem SA. Study of the cross-sections of neutron interaction with lithium isotopes according to the reaction of the reverse reaction. AIP Conf Proc. 2023;3018(1).
13. Basdevant JL, Rich J, Spiro M. Fundamentals in nuclear physics: From nuclear structure to cosmology. Springer Science & Business Media. 2005;45(15):55-67.
14. Hamadani HT, Younis TA, Ebrahiem SA. Evaluation of The Nuclear Data on (α, n) Reaction for Natural Molybdenum. Ibn Al-Haitham J Pure Appl Sci. 2017;23(3):76-85.
15. Youhana HM, Ebrahiem SA. Determining of Cross Sections for 22Na (n, α) 19F reaction from Cross Sections of 19F (α, n) 22Na reaction using the reciprocity theory for the ground state. Ibn Al-Haitham J Pure Appl Sci.. 2009;22(2):144-156.
16. Ali TA, Ebrahiem SA. Study of the cross-sections of neutron interaction with lithium isotopes according to the reaction of the reverse reaction. AIP Conf Proc. 2023;3018(1). AIP Publishing https:// doi.org/10.1063/5.0172831.
17. Muehlhause CO. Neutron Fields: Production, Transport Character, and Detection: Neutron Physics. KH Beckurts and K. Wirtz. Translated from the second German edition (1964) by L. Dresner. Springer-Verlag, New York, 1964. x+ 444 pp. Illus. $17. Science. 1965;148(3669):489-489.
18. Waly BH, Ebrahiem SA. Study of the nuclear properties of an aluminum isotope in the production of third cycle elements. AIP Conf Proc. 2022;2437(1).
19. Mohammed NA. Ebrahiem SA. Assessment of radiation risk parameters for natural radon in three Iraqi institutions for February AIP Conf Proc. 2020;2307(1). AIP Publishing. https://doi.Org /10.1063/5.0035396.
20. Sathik NP, Ansari MA, Singh BP, Prasad R. Measurement and analysis of excitation functions for alpha induced reactions on iodine and cesium. Pramana. 1996;47(4):401-410.
21. Abbood NM, Ebrahiem SA. Study of Nuclear Properties of High Purity Germanium. Ibn Al-Haitham J Pure Appl Sci. 2020;33(1):31-39. https://doi.org/10.30526/33.1.2374.
22.Hiba MA, Hadi JM, Naz TJ, Sameera AE. Neutron yield for (70Zn) by bombarding of alpha particles. Acad Sci J. 2014;10(3-part 2).
23. Muslim RA, Mahdi KH, Ebrahiem SA. Study of Properties for Ca (a, n) Ti Reactions and n-Yield for Ca Isotopes (A= 41-50). Appl. Phys. 2014;23(13): 34-56.
24. Firestons R, Shirley VS. Table of isotopes eighth edition, Newyork. 1999.
25. Ebrahiem SA, Abbas IA, Ibraheim AM. Ameer MA. Cross Sections Calculations of 33S (n, α) 30 Si reaction by using the inverse reaction for the first excited state. Cross Sections. 2013;7(2):162-167.
26. Abbas IA, Ibraheim AM, Abbas SA, Ebrahiem SA. Calculation the Cross Sections for64Cu (n, p) 64Ni Reaction By Reciprocity Theory. J Univ Anbar Pure Sci. 2013;7(2).
27. Ebrahiem SA, Sarsam MN, Youhana HM, Abd-Al-Hameed NT. Determining of cross-sections for 16O (n, α) 13C reaction from cross-sections of 13C (α, n) 16O for the ground state. Ibn Al-Haitham J Pure Appl Sci. 2013;26(1):109-115.
28. Youhana HM, Ebrahiem SA. Determining of cross-sections for 22Na (n, α) 19F reaction from cross-sections of 19F (α, n) 22Na reaction using the reciprocity theory for the ground state. Ibn Al-Haitham J Pure Appl Sci. 2009;22(2).
29. Ebrahiem A,Mahdi KH, Tawfeeq H M. Calculation the Cross Sections of 3He(n,p)3H reaction for ground state using reciprocity theorem . J Kufa-Phys. 2010;23(12):123-143.
30. Hamadani HT, Younis TA, Ebrahiem SA. Evaluation of The Nuclear Data on (α, n) Reaction for Natural Molybdenum. Ibn Al-Haitham J Pure Appl Sci. 2010;23(3), 76-85.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms