Theoretical Investigation Including Averages Fusion Cross-Section, Reactivity for the D-D and D-3He Reactions
DOI:
https://doi.org/10.30526/38.2.4019Keywords:
Fusion reaction, Fusion reactivity, Deuterium fuels, Laser pulses, Ion maxwellain distribution, Power introductionAbstract
Nuclear fusion technology for power production is considered a renewable and clean energy source, and it is used in many applications such as scientific research, systems for electrical energy production, and fast charge particles such as protons, alpha particles, electrons, beta particles, positrons, etc. In addition, there exists another application such as materials irradiation and artificial elements production. There exist more than 51 fusion reactions in nature. The most important thermonuclear fusion reactions are those used in one of the common hydrogen isotopes such as deuterium, the D-D and D-3He reactions. A laboratory fusion cross-section data fitting equations are calculated theoretically by using the least square fitting technique. Calculations include results for average cross-sections <σ> and the related fusion reaction reactivaties <σv> for the above two reactions. Both reactions D-D and D-3He occur in the energy and or temperature range in between energetic ions coming from the measured Maxwellian distribution and atoms at rest.
References
1. Majeed RH, Abed MM. Plasma Power Density Produced by DT Fusion Reaction. Ibn Al-Haitham J Pure Appl Sci. 2017;27(3):256–64.
2. Zohuri B. Hydrogen Energy: Challenges and Solutions for a Cleaner Future. Springer; 2019. ISBN 978-3-319-93461-7. https://doi.org/10.1007/978-3-319-93461-7
3. Zohuri B. Plasma Physics and Controlled Thermonuclear Reactions Driven Fusion Energy. Springer; 2016. ISBN 978-3-319-47309-3. https://doi.org/10.1007/978-3-319-47310-9
4. Laheeb AM. Achievements About The Hot Plasma Parameters In Dense Plasma Focus Device. Doctoral dissertation, The College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad; 2012.
5. Abd-Noor SJ, Mkhaiber AF. Investigate various shielding parameters for (C18H20O8) x (ZrSiO4) 100-x and (C18H20O8) x (BiClO) 100-x in medical radiological applications. Journal of Physics: Conference Series. IOP Publishing; 2024. 2754(1):012011. https://doi.org/10.1088/1742-6596/2754/1/012011
6. Taki AK, Majeed RH, Jassim MK. Improved D–3He Fusion Reaction Characteristics Parameters. Ibn Al-Haitham J Pure Appl Sci. 2017;26(3):132–42.
7. Bystritsky VM, Dudkin GN, Nechaev BA, Padalko VN, Pen'kov FM, Tuleushev Yu Zh, Filipowicz M, Philippov AV. Investigation of the D (3He, p) 4He Reaction in the Astrophysical Energy Region of 18–30 keV. JETP Lett. 2018;107:665–70. https://doi.org/10.1134/S0021364018110012
8. Majeed RH, Mohammed LA. The Study of An Improved Model For The DD Nuclear Fusion Reaction Cross Section. Ibn Al-Haitham J Pure Appl Sci. 2017;26(2):120–8.
9. Kiptily VG, Kazakov YO, Nocente M, Ongena J, Belli F, Dreval M, Craciunescu T, JET Contributors. Excitation of Alfvén eigenmodes by fusion-born alpha-particles in D-3He plasmas on JET. Plasma Phys Control Fusion. 2022;64(6):64001.https://doi.org/10.1088/1361-6587/ac5d9e
10. Ali TA, Ebrahim SA. Study of the cross-sections of neutron interaction with lithium isotopes according to the reaction of the reverse reaction. AIP Conference Proceedings. AIP Publishing; 2023. 3018(10):020039.https://doi.org/10.1063/5.0172831
11. Amin AK, Tawfeek HM. Study the Cross Section of 67Ga (n, p) 67Zn Reaction by using the Reverse Reaction in the Ground State. Journal of Physics: Conference Series. IOP Publishing; 2024;2754(1) 12018. https://doi:10.1088/1742-6596/2754/1/012018
12. Bang W, Barbui M, Bonasera A, Quevedo HJ, Dyer G, Bernstein AC, Ditmire T. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases. Phys Rev E Stat Nonlinear Soft Matter Phys. 2013;88(3):033108. https://doi.org/10.1103/PhysRevE.88.033108
13. Godes AI, Shablov VL. Lawson criterion for different scenarios of using D-3He fuel in fusion reactors. Nucl Energy Technol. 2023;9(4):207-214. https://doi.org/10.3897/nucet.9.114267
14. Osamah NO. Calculations of the Nuclear Fusion Products Energies and Related Parameters for Thermonuclear Fusion Reaction. Doctoral dissertation, The College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad; 2018.
15. Schollmeier MS, Shirvanyan V, Capper C, Steinke S, Higginson A, Hollinger R. Investigation of proton beam-driven fusion reactions generated by an ultra-short Petawatt-scale laser pulse. Laser Part Beams. 2022;4:12. https://doi.org/10.1155/2022/2404263
16. Wolf EL. Physics and Technology of Sustainable Energy. Oxford University Press; 2018. ISBN: 9780191822636. https://doi.org/10.1093/oso/9780198769804.001.0001
17. Abbas SA, Hussein AA, Obaid SM, Mohammed NA. Fusion Reaction Study of Some Selected Halo Systems. Baghdad Sci J. 2023;20(2):458. http://dx.doi.org/10.21123/bsj.2022.6985
18. Majeed RH, Oudah ON. Achieving an optimum slowing-down energy distribution functions and corresponding reaction rates for the (D+ 3He and T+ 3He) fusion reactions. AIP Conference Proceedings. AIP Publishing; 2018. 1968:030048. https://doi.org/10.1063/1.5039235
19. Baldık R. Theoretical Calculations of the Cross-Sections for (n, α) and (n, xα) Reactions on the Structural Material for Fusion Reactor 46-50Ti. Iraqi J Phys. 2021;19(50):9–19. https://doi:10.30723/ijp.v19i50.636
20. Barbui M, Bang W, Bonasera A, Hagel K, Schmidt K, Natowitz J, Giuliani G, Barbarino M. Study of the yield of DD, D-3He fusion reactions produced by the interaction of intense ultrafast laser pulses with molecular clusters. Journal of Physics: Conference Series. IOP Publishing; 2013;420(1). 12060. https://doi.org/10.1088/1742-6596/420/1/012060
21. Krása J, Klír D. Scaling of Laser Fusion Experiments for DD-Neutron Yield. Front Phys. 2020;8:310. https://doi.org/10.3389/fphy.2020.00310
22. Nocente M, Kazakov Y, Garcia J, Kiptily VG, Ongena J, JET Contributors. Generation and observation of fast deuterium ions and fusion-born alpha particles in JET plasmas with the 3-ion radio-frequency heating scenario. Nucl Fusion. 2020;60(12):124006.
23. Ciepał I, Kuboś Bodek K, Kalantar-Nayestanaki N, Khatri G, Kistryn Zejma J. Investigation of the cross-section for dd elastic scattering and dd → n He3 reactions at 160 MeV. Phys Rev C. 2019;99(1):14620. https://doi.org/10.1103/PhysRevC.99.014620
24. Kubes P, Kravarik J, Klir D, Rezac K, Bohata M, Scholz M, Paduch M, Tomaszewski K, Ivanova-Stanik I, Karpinski L, Sadowski M. Determination of deuteron energy distribution from neutron diagnostics in a plasma-focus device. IEEE Trans Plasma Sci. 2008;37(1):83–7. https://doi.org/10.1109/TPS.2008.2005899
25. Kondo T, Yamazaki K, Oishi T, Arimoto H, Shoji T. Economic Evaluation of DT, D-3He, and Catalyzed DD Fusion Reactors. Plasma Fusion Res. 2012;7:2405067. https://doi.org/10.1585/pfr.7.2405067
26. Chubb TA. Three types of dd fusion. Trans Nucl Soc. 2005;93:895.
27. Atzeni S, Meyer-ter-Vehn J. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford: OUP Oxford; 2004;23 p. 24–45.
28. Bosch HS, Hale GM. Improved formulas for fusion cross-sections and thermal reactivities. Nucl Fusion. 1992;32(4):611.
29. Frignani M. Simulation of gas breakdown and plasma dynamics in plasma focus devices. Appl Phys. 2007;23:12–23.
30. Bernard A, Bruzzone H, Choi P, Chuaqui H, Gribkov V, Herrera J, Hirano K, Krejci A, Lee S, Luo C, Mezzetti F, Sadowski M, Schmidt H, Ware K, Wong CS, Zoita V. Scientific status of plasma focus research. Journal-Moscow Phys Soc. 1998;8:93–170
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms