Detect and Calculate the Speed of Moving Objects Using R-CNN Technique

Authors

DOI:

https://doi.org/10.30526/38.2.4020

Keywords:

Detect moving object, RCNN, Algorithm in MATLAB software, Artificial intelligence

Abstract

     Artificial intelligence (AI) algorithms depend on different algorithms to track moving objects. The surrounding environment, like lightness, affects detection accuracy. A new algorithm is designed to detect moving objects in real time automatically and calculate the speed of tested objects based on the deep learning algorithm RCNN using MATLAB software. The suggested system consists of a phone camera, four balls in different colors (red, green, blue, and black), and various environmental lights consisting of eight lights. Two luxmeters were used to check the light intensity around the ball and the camera phone. Detecting moving objects has gained a lot of desirability because of its applications like video surveillance, person movement tracking, traffic investigation, and security systems like security systems or surveillance. are four parameters used to evaluate the performance of the algorithms and the system setup: accuracy, average time, detection percentage, and speed. Results show that the quality of detecting and tracking the ball is almost 100%.   

Author Biographies

  • Batool R. Abd, Department of Physics, College of Sciences for Women, University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Sciences for Women, University of Baghdad, Baghdad, Iraq.

  • Heba Khudhair Abbas, Department of Physics, College of Sciences for Women, University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Sciences for Women, University of Baghdad, Baghdad, Iraq.

References

1. Chen W, Luo J, Zhang F, Tian Z. A review of object detection: Datasets, performance evaluation, architecture, applications and current trends. Multimedia Tools Appl. 2024. https://doi:10.1007/s11042-023-17949-4.

2. Cui B, Créput J-C. A Systematic Algorithm for Moving Object Detection with Application in Real-Time Surveillance. SN Comput Sci. 2020;1(2):106. https://doi:10.1007/s42979-020-0118-5.

3. Delibaşoğlu İ. Moving object detection method with motion regions tracking in background subtraction. Signal Image Video Process. 2023;17(5):2415-2423. https://doi:10.1007/s11760-022-02458-y.

4. Chacon-Murguia MI, Guzman-Pando A. Moving Object Detection in Video Sequences Based on a Two-Frame Temporal Information CNN. Neural Process Lett. 2023;55(5):5425-5449. https://doi:10.1007/s11063-022-11092-1.

5. Yara S, Ganivada A. Detection of Moving Objects and Enhancement Using Motion Features in Various Video Sequences. In: Proceedings of Innovations in Computer Science and Engineering; Singapore, 2022. p. 665-674.

6. Abbas HK, Mohamad HJ. Feature Extraction in Six Blocks to Detect and Recognize English Numbers. Iraqi J Sci. 2021;62(10):3790-3803. https://doi:10.24996/ijs.2021.62.10.37.

7. Nallasivam M, Senniappan V. Moving Human Target Detection and Tracking in Video Frames. Stud Inform Control. 2021;30(1):119-129. https://doi:10.24846/v30i1y202111.

8. Khasim KNV, Anilkumar G, Vamshi G, Ch SK, Nikhil Yadav M. Moving Object Detection and Speed Estimation by Digital Image Processing. J Phys Conf Ser. 2022;2325:012035. https://doi:10.1088/1742-6596/2325/1/012035.

9. Tilon SM, Nex F. Vehicle Tracking and Speed Estimation From Unmanned Aerial Vehicles Using Segmentation-Initialised Trackers. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. 2023;X-1/W1-2023;10:431-437. https://doi:10.5194/isprs-annals-X-1-W1-2023-431-2023.

10. Chaudhuri A. Smart traffic management of vehicles using faster R-CNN based deep learning method. Sci Rep. 2024;14(1):10357. https://doi:10.1038/s41598-024-60596-4.

11. Saraf P, Watve S, Kulkarni A. Object Detection: Literature Review. In: Proceedings of the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022); Cham, 2023. p. 485-494.

12. Pu C, Ju L, Gao F, Yu J. RatiO R-CNN: An Efficient and Accurate Detection Method for Oriented Object Detection. In: Proceedings of Image and Graphics; Cham, 2023. p. 28-40. https://doi:10.1088/1757-899X/571/1/012117.

13. Gorelik AJ, Gorelik MG, Ridout KK, Nimarko AF, Peisch V, Kuramkote SR, Low M, Pan T, Singh S, Nrusimha A. Evaluating efficiency and accuracy of deep-learning-based approaches on study selection for psychiatry systematic reviews. Nat Ment Health. 2023;1(9):623-632. https://doi:10.1038/s44220-023-00109-w.

14. Noor MH, Heba Kh A, Mohamad HJ. Detection and Recognition of Car Plates in Parking Lots at Baghdad University. Iraqi J Sci. 2023;64:1018-1029. https://doi:10.24996/ijs.2023.64.2.43.

15. Abbas HK, Al-Saleh AH, Mohamad HJ, Al-Zuky AA. New algorithms to Enhance Fused Images from Auto-Focus Images. Baghdad Sci J. 2021;18(1):0124. https://doi:10.21123/bsj.2021.18.1.0124.

16. Awad R, Al-Zuky AA, Al-Saleh AH, Mohamad HJ. Enhance Video Film using Retnix method. J Phys Conf Ser. 2018;1003(1):012124. https://doi:10.1088/1742-6596/1003/1/012124.

17. Abbas HK, Mohamad HJ, Al-Saleh AH, Al-Zuky AA. Modelling vision angles of optical camera zoom using image processing algorithm. IOP Conf Ser: Mater Sci Eng. 2019;571(1):012117. https://doi:10.1088/1757-899X/571/1/012117.

18. Derea AS, Abbas HK, Al-Saleh AH, Mohamad HJ. Adopting Texture Features to Detect and Recognize Brain Tumors in Magnetic Resonance Images. IOP Conf Ser: Mater Sci Eng. 2020;757(1):012029. https://doi:10.1088/1757-899X/757/1/012029.

19. Rasham NH, Abbas HK, Abdul Razaq AA, Mohamad HJ. Simulation of Speckle Noise Using Image Processing Techniques. In: Proceedings of the Computer Networks and Inventive Communication Technologies; Singapore, 2022. p. 489-501.

20. Jawad Mk, Daway HG, Mohamad HJ, Daway EG. Lightness Enhancement by Fuzzy Logic Depending on Power Membership Function. J Phys Conf Ser. 2021;1999:012129. https://doi:10.1088/1742-6596/1999/1/012129.

21. Zhan C, Duan X, Xu S, Song Z, Luo M. An improved moving object detection algorithm based on frame difference and edge detection. In: Proceedings of Image and Graphics, Fourth International Conference; IEEE, 2007. p. 519-523.

22. Hu W, Tan T, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern Part C Appl Rev. 2004;34(3):334-352. https://doi:10.1108/1757-899X/571/1/012117.

23. Murshed M, Kabir MH, Chae O. Moving object tracking-an edge segment based approach. Int J Innov Comput Inf Control. 2011;24(4):23-35.

24. Yutaka SS, Kaneko S, Satoru I. Robust object detection and segmentation by peripheral increment sign correlation image. Trans IEICE. 2001;84(12):2585-2594.

25. Sudha D, Priyadarshini J. An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm. Soft Comput. 2020;24(22): 17417-17429.

26. Zhang B, Zhou L, Zhang J. A methodology for obtaining spatiotemporal information of the vehicles on bridges based on computer vision. Comput Aided Civil Infrastruct Eng. 2019;34(6):471-487. https://doi:10.1088/1757-899X/571/1/012117.

27. Liu L. Moving object detection technology of line dancing based on machine vision. Mobile Inf Syst. 2021;2021:23-45. https://doi:10.1088/1757-899X/571/1/012117.

28. Ji Q, Dai C, Hou C, Li X. Real-time embedded object detection and tracking system in Zynq SoC. EURASIP J Image Video Process. 2021;2021(1):12-23.

29. Zhang C, Liang B, Ma S, Xiang C, Bai Z, Wang J. Research on the attribute extraction algorithm of people and vehicles based on video structure. J Phys Conf Ser. 2021;1802:34-45. https://doi:10.1088/1757-899X/571/1/012117.

30. Zhang W, Sun W. Research on small moving target detection algorithm based on complex scene. J Phys Conf Ser. 2021; 1: 012093.

Downloads

Published

20-Apr-2025

Issue

Section

Physics

How to Cite

[1]
Abd, B.R. and Khudhair Abbas, H. 2025. Detect and Calculate the Speed of Moving Objects Using R-CNN Technique. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 176–183. DOI:https://doi.org/10.30526/38.2.4020.