Fabrication and Study Structure and Optical Properties of Cu0.75Zn0.25S Thin Film
DOI:
https://doi.org/10.30526/38.2.4022Keywords:
CZS, Annealing temperature, Thin films, X-ray diffraction, AFM, Thermal evaporationAbstract
Thin films (CuxZn1-xS) with x = 0.75 nano crystallized were deposited from the alloy on glass substrates in a vacuum ~ 2 × 10− 5 mbar by thermal evaporation technique with 450±20 nm thickness. The effects of annealed temperature (deposits, 423, 523, and 623) K for one hour on the structure, morphology, and optical properties of Copper Zinc Sulfide (CZS) films were investigated. The structural properties of Cu0.75Zn0.25S films were examined using the X-ray diffraction (XRD) technique as a function of annealed temperatures. XRD presented the Cu0.75Zn0.25S films as polycrystalline in the environment by a mixed hexagonal structure of CuS-ZnS, preferred orientation along the (201) plane, and crystallite size varying from 8.41-23.28 nm with annealing temperature. Atomic force microscopy (AFM) analysis was used to investigate the morphological properties of Cu0.75Zn0.25S films; the grain size of these films varies with annealing temperature in the range of (58.39 to 139.42) nm with uniform distribution. The influences of annealing temperature on the optical characterization of Cu0.75Zn0.25S thin film were examined using UV-Vis absorption spectroscopy. Direct band gap values of Cu0.75Zn0.25S films are gained from optical absorption measurements with a range (2.3-1.8) eV as a function of annealing temperature. From the results obtained above, it appears to us that the temperature is the most suitable for practical applications, which directed that Cu0.75Zn0.25S thin film is suitable for solar cell applications.
References
1. Sreejith MS. Tuning of properties of sprayed CuZnS films. AIP Conf Proc. 2014;1591:1741-3. https://doi.org/10.1063/1.4873096.
2. Edwin Jose MC, Santhosh K. Room temperature deposition of highly crystalline Cu-Zn-S thin films for solar cell applications using SILAR method. Journal of Alloys and Compounds. 2017;712:649-56. https://doi.org/10.1016/j.jallcom.2017.04.097.
3. Aabel P, Santhosh MC. A comprehensive review of the prospects for future hydrogen storage in materials-application and outstanding issues. Int J Energy Res. 2020;23(2):1–11. https://doi.org/10.1002/er.5227.
4. Wang H, Geng DY, Zhang YJ, Zhang ZD. CuS: Ni flowerlike morphologies synthesized by the solvothermal route. Mater Chem Phys. 2010;122:241–5. https://doi.org/10.1016/j.matchemphys.2010.02.042.
5. López MC. Growth of ZnS thin films obtained by chemical spray pyrolysis: The influence of precursors. J Cryst Growth. 2005;285:66-75. https://doi.org/10.1016/j.jcrysgro.2005.07.050.
6. Saranya M, Santhosh C, Ramachandran R, Kollu P, Saravanan P, Vinoba M. Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol. 2014;252(25):32-4. https://doi.org/10.1016/j.powtec.2013.10.031.
7. Abd El-Gawad AHM, Khalil AAI, Gadallah AS. Influence of preparation conditions on the properties of silver-doped copper-zinc sulfide thin films prepared via sol-gel spin coating technique. Optik. 2020;223:165561. https://doi.org/10.1016/j.ijleo.2020.165561.
8. Nanasaheb P, Huse RM, Patil RS. Characterization of economic and non-toxic copper doped zinc sulfide thin film grown by facile chemical bath deposition method. ES Mater Manuf. 2023;20:839. https://doi.org/10.30919/esmm5f839.
9. Masaya I, Yosuke M. Conduction type of nonstoichiometric alloy semiconductor CuxZnyS deposited by the photochemical deposition method. Thin Solid Films. 2015;594:277–81. https://doi.org/10.1016/j.tsf.2015.04.071.
10. Heidari G. Application of CuSeZnS PN junction for photoelectrochemical water splitting. Int J Hydrogen Energy. 2017;42:9545–52. https://doi.org/10.1016/j.ijhydene.2017.01.176.
11. Wang X, Peng W, Li X. Photocatalytic hydrogen generation with simultaneous organic degradation by composite CdSeZnS nanoparticles under visible light. Int J Hydrogen Energy. 2014;39:13454–61. https://doi.org/10.1016/j.ijhydene.2014.04.034.
12. Thuy U, Liem N, Parlett C, Lalev G, Wilson K. Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal Commun. 2014;44:62-7. https://doi.org/10.1016/j.catcom.2013.07.030.
13. Guan XH, Qu P, Guan X, Wang GS. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties. RSC Adv. 2014;4:15579–85. https://doi.org/10.1039/C4RA00659C.
14. Yu J, Zhang J, Liu S. Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. J Phys Chem C. 2010;114:13642–9. https://doi.org/10.1021/jp101816c.
15. Gubari GM, Ibrahim SM, Huse NP, Dive AS, Sharma R. An experimental and theoretical study of Cu0.2Zn0.8S thin film grown by facile chemical bath deposition as an efficient photosensor. J Electron Mater. 2018;47:6128–35. https://doi.org/10.1007/s11664-018-6491-3.
16. Diamond AM, Corbellini L, Balasubramaniam KR, Chen S, Wang S, Matthews TS, et al. Copper-alloyed ZnS as a p-type transparent conducting material. Phys Status Solidi. 2017;20(12):209–101https://doi.org/10.1002/pssa.201228181.
17. Yang K, Nakashima Y, Ichimura M. Electrochemical deposition of CuxS and CuxZnyS thin films with p-type conduction and photosensitivity. J Electrochem Soc. 2012;159:H250–H254. https://doi.org/10.1149/2.042203jes.
18. Man D, Kai Y, Ichimura M. Semiconductor. Sci Technol. 2012;27:125007. https://doi.org/10.1088/0268-1242.
19. Ichimura M, Maeda Y. Solid-State Electronics. 2015;107:8-10. https://doi.org/10.1016/j.sse.2015.02.016.
20. Ni WS, Lin YJ. A novel Ni/WOX/W resistive random access memory with excellent retention and low switching current. Appl Phys A. 2015;119:1127–32. https://doi.org/10.1007/s00339-015-9079-2.
21. Aabel P, Santhosh MC. Deposition and characterization of earth abundant CuZnS ternary thin films by vacuum spray pyrolysis and fabrication of p-CZS/n-AZO heterojunction solar cells. Int J Energy Res. 2020;23(12):1–11.
22. Adelifard M, Eshghi H, Bagheri MM. Synthesis and characterization of nanostructural CuS–ZnS binary compound thin films prepared by spray pyrolysis. Optics Commun. 2012;285:4400–4. https://doi.org/10.1016/j.optcom.2012.06.030.
23. Sreejith MS, Deepu DR, Kartha CS, Rajeevkumar K, Vijayakumar KP. Tuning the properties of sprayed CuZnS films for fabrication of solar cell. Appl Phys Lett. 2014;105:202107. https://doi.org/10.1063/1.4902224.
24. Yildirim MA. Phys E: Low Dimens Syst Nanostruct. 2009;41:1365–72. https://doi.org/10.1016/j.physe.2009.04.014.
25. Chen C, Shi JB, Wu C, Chen CJ, Lin YT, Wu PF. Fabrication and optical properties of CuS nanowires by sulfuring method. Mater Lett. 2008;62:1421. https://doi.org/10.1016/j.matlet.2007.08.076.
26. Abbas H, Al-Obeidi H, Bushra KH. Effect of thermal annealing on the structural and optical properties of Sb2Se3 thin films. AIP Conf Proc. 2023;2475:090026. https://doi.org/10.1063/5.0123128.
27. Duaa MS, Bushra KH. The effect of thickness on electrical conductivity and optical constant of Fe2O3 thin films. Ibn Al-Haitham J Pure Appl Sci. 2023;36(2):113–23. https://doi.org/10.30526/36.2.2930.
28. Hamid AA, Bushra KH. Synthesis and characterization of Cu2S:Al thin films for solar cell applications. Chalcogenide Lett. 2022;19(9):579–90. https://doi.org/10.15251/CL.2024.215.385.
29. Ghuzlan SA, Bushra KH. Opto-electrical properties of p-SnSe:S/N-Si heterojunction for solar cell application. AIP Conf Proc. 2019;2123:020074. https://doi.org/10.1063/1.5117001.
30. Athab RH, Hussein BH. Fabrication and study of characteristics of HgSr2Can-1CunOδ+10 (n = 1, 2, and 3) thin films superconducting. Digest J Nanomater Biostruct. 2022;17(4):1173–80. https://doi.org/10.15251/DJNB.2022.174.1173.
31. Bushra HH, Hanan KH. Study and preparation of optoelectronic properties of AgAl1-xInxSe2/Si heterojunction solar cell applications. NeuroQuantology. 2020;18(5):77–87. https://doi.org/10.14704/nq.2020.18.5.NQ20171.
32. Al-Maiyaly BKH, Hussein BH, Hassan HK. Growth and optoelectronic properties of p-CuO:Al/n-Si heterojunction. J Ovonic Res. 2020;16(5):267–71. https://chalcogen.ro/267_MaiyalyBKH.pdf.
33. Ali SM, Hassun HK, Salih AA, Athabb RH, Al-Maiyaly BK, Hussein BH. Study the properties of Cu2Se thin films for optoelectronic applications. Chalcogenide Lett. 2022;19(10):663–71. https://doi.org/10.15251/CL.2022.1910.663.
34. S. Sreekanth, K. Santhosh. Fabrication and characterization of Cu-Zn-S thin films for solar cell applications. Solar Energy Materials and Solar Cells. 2016,147: 136–142. https://doi.org/10.1016/j.solm
35. Ali AY, Aseel AJ. Structure, surface morphology and optical properties of CuxZn1-xS/Au NPs layer for photodetector application. Int J Innov Sci Eng Technol. 2015;2(34):12-23. https://doi.org/10.1088/1742-6596/1234/1/012012.
36. Radloff GH, Naba FM, Ocran S, Bennett ME, Sterzinger KM, Armstrong AT.Fabrication and characterization of highly efficient dye-sensitized solar cells with composited dyes. Digest J Nanomater Biostruct. 2022;17(2):457-72. https://doi.org/10.15251/DJNB.2022.172.457.
37. Ali Yildirim MA, Aytunc At, Aykut A. Annealing and light effect on structural, optical and electrical properties of CuS, CuZnS and ZnS thin films grown by the SILAR method. Phys E. 2009;41(2):1365–72. https://doi.org/10.1016/j.physe.2009.04.014.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms