Impacts of Non-Thermal Plasma on the Structural and Optical Characteristics of Cr:Se Core-Shell Thin Films Synthesized Using Chemical Spray Pyrolysis
DOI:
https://doi.org/10.30526/38.3.4026Keywords:
Cr:Se, Core-shell, Plasma jets, DBD, Thin filmAbstract
Over the past few years, there has been a significant focus on studying the synthesis and applications of metal nanoparticles. These tiny particles possess distinct properties that set them apart from bulk metals. Cr:Se core-shell nano thin film has been pre-coated by plasma jets with different concentrations (10:0, 8:2, and 6:4) and deposition by chemical spray pyrolysis. The nano-thin films were analyzed by X-ray diffraction (XRD), ultraviolet-visible spectroscopy(UV), and transmission electron microscopy TEM. This study looks into the structure and optical features of core-shell nanoparticles made with different ratios of chromium and selenium (Cr:Se). The X-ray diffraction patterns confirm the crystalline nature of the nanoparticles and the ratio (6:4). Exposing the best crystalline phase to non-thermal plasma (DBD) results in significant changes in the XRD, transitioning towards a more crystalline phase. Tauc plots show a non-linear trend in direct bandgap energies, meaning the energy gap increased (2.77-3.88 eV), notably increasing. Transmission electron microscopy analysis highlights improved nanoparticle distribution and uniformity. non-thermal plasma ( DBD ) significantly enhances the humidity sensitivity, thereby optimizing the nanoparticles for sensor applications. These findings underscore the potential of Cr:Se nanoparticles for advanced optoelectronic and sensing technologies and various technological applications.
References
1. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–2433. https://doi.org/10.1021/cr100449n
2. Habibullah GJ, Viktorova T. Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett. 2021;16(1):47. https://doi.org/10.1186/s11671-021-03480-8
3. Nguyen LN. Structural and optical sensing properties of nonthermal atmospheric plasma-synthesized polyethylene glycol-functionalized gold nanoparticles. Nanomaterials. 2021;11(7):1678. https://doi.org/10.3390/nano11071678
4. Bisht S. Plasma applications for environmental protection. Int J Eng Adv Technol. 2014;3(5):77–81. https://doi.org/28d6a8f084e88872c1207bc97
5. Saleh KM. Study influence of substrate temperature on optical properties of CdS thin films prepared by chemical spray pyrolysis. Ibn Al-Haitham J Pure Appl Sci. 2019;32(1):7–16. https://doi.org/10.30526/32.1.1982
6. Bedolla-Hernández M. Electrodeposition mechanism of chromium nanoparticle coatings: modeling and experimental validation. Chem Eng Sci. 2022;252:117291. https://doi.org/10.1016/j.ces.2021.117291
7. Folkenant M. Structure and properties of Cr–C/Ag films deposited by magnetron sputtering. Surf Coat Technol. 2015;281:184–192. https://doi.org/10.1016/j.surfcoat.2015.09.054
8. Zhu X. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem Mater. 2021;33(10):3851–3858. https://doi.org/10.1021/acs.chemmater.1c01222
9. Azeez NA. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere. 2021;266:129204. https://doi.org/10.1016/j.2020.129204
10. Mahmoud ME. Recent advances in adsorptive removal and catalytic reduction of hexavalent chromium by metal–organic frameworks composites. J Mol Liq. 2022;347:118274. https://doi.org/10.1016/j.molliq.2021.118274
11. Kolay A. Selenium nanoparticle-decorated silicon nanowires with enhanced liquid-junction photoelectrochemical solar cell performance. J Phys Chem C. 2019;123(14):8614–8622. https://doi.org/10.1021/acs.jpcc.9b00062
12. Kanagaraj J. Biosorption of trivalent chromium from wastewater: an approach towards green chemistry. Chem Eng Technol. 2014;37(10):1741–1750. https://doi.org/10.1002/ceat.201200716
13. Zhang B. Selenium (Ⅳ) alleviates chromium (Ⅵ)-induced toxicity in the green alga Chlamydomonas reinhardtii. Environ Pollut. 2021;272:116407. https://doi.org/10.1016/j.envpol.2020.116407
14. Khatami M, Alijani HQ, Sharifi I. Biosynthesis of bimetallic and core-shell nanoparticles: their biomedical applications–a review. IET Nanobiotechnol. 2018;12(7):879–887. https://doi.org/10.1049/iet-nbt.2017.0308
15. Gawande MB. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev. 2015;44(21):7540–7590. https://doi.org/10.1039/C5CS00343A
16. Parauha YR, Sahu VD. Prospective of combustion method for preparation of nanomaterials: A challenge. Mater Sci Eng B. 2021;267:115054. https://doi.org/10.1016/j.mseb.2021.115054
17. Rajput N. Methods of preparation of nanoparticles—a review. Int J Adv Eng Technol. 2015;7(6):1806. file:///C:/Users/hp/Downloads/Nano3%20(3).pdf
18. Hrdlicka M. Optical parameters of In–Se and In–Se–Te thin amorphous films prepared by pulsed laser deposition. J Phys Chem Solids. 2007;68(5–6):846–849. https://doi.org/10.1016/j.jpcs.2007.02.043
19. Afzal A. Structural and magnetic phase transition of sol–gel-synthesized Cr2O3 and MnCr2O4 nanoparticles. J Sol-Gel Sci Technol. 2016;80:96–102. https://doi.org/10.1007/s10971-016-4066-4
20. Rappaport WD. Effect of electrocautery on wound healing in midline laparotomy incisions. Am J Surg. 1990;160(6):618–20. https://doi.org/10.1016/s002-9610(05)80757-3
21. Maguire P. Continuous in-flight synthesis for on-demand delivery of ligand-free colloidal gold nanoparticles. Nano Lett. 2017;17(3):1336–1343. https://doi.org/10.1021/acs.nanolett.6b03440
22. Palaskar S. Dielectric barrier discharge plasma induced surface modification of polyester/cotton blended fabrics to impart water repellency using HMDSO. J Appl Polym Sci. 2011;122(2):1092–100. https://doi.org/10.1002/app.34237
23. De Geyter N. Effect of electrode geometry on the uniformity of plasma-polymerized methyl methacrylate coatings. Prog Org Coat. 2011;70(4):293–299. https://doi.org/10.1016/j.porgcoat.2010.11.009
24. Al-Halbosiy M. Effect gold nanoparticles generated by cold plasma for mineral blood. AIP Conf Proc. 2020; https://doi.org/10.1063/5.0032718
25. Patil PS. Versatility of chemical spray pyrolysis technique. Mater Chem Phys. 1999;59(3):185–98. https://doi.org/10.1016/S0254-0584(99)00049-8
26. Mohammed MS. Plasma jet prepared gold and silver nanoparticles to induce caspase-independent apoptosis in digestive system cancers. Mater Sci Forum. 2022; https://doi.org/10.4028/www.scientific.net/MSF.1050.51
27. Khalaji D. Structural, Optical and Magnetic Studies of Cr2O3 Nanoparticles Prepared by Microwave-Assisted. Nanochem Res. 2021;6(1):18–24. https://doi.org/10.22036/NCR.2021.01.003
28. Jiang FW, Cai G. Facile synthesis and optical properties of small selenium nanocrystals and nanorods. Nanoscale Res Lett. 2017;12:1–6. https://doi.org/10.1186/s11671-017-2165-y
29. Abdul-Ameer ZN. Novel Co-Precipitation method for synthesis of nanostructured nickel oxide in accordance to pH: Structural and optical properties as an active optical filter. Ibn Al-Haitham J Pure Appl Sci. 2019;32(1):1–6. https://doi.org/10.30526/32.1.1974
30. El-Nahas S. Controlled morphological and physical properties of ZnO nanostructures synthesized by domestic microwave route. Mater Chem Phys. 2021;258:123885. https://doi.org/10.1016/j.matchemphys.2020.123885
31. Dawood M. Effect of Li doping on structure and optical properties of NiO nano thin-films by SPT. AIP Conf Proc. 2020; https://doi.org/10.1063/5.0000136
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms