Modeling of Moth Eye Structures for Silicon Solar Cells Efficiency Enhancement
DOI:
https://doi.org/10.30526/38.3.4028Keywords:
Moth-Eye, Nano structures, Solar cells, Finite difference time domain, Efficiency enhancementAbstract
Moth-eye nano-structure is essentially used as a light-trapping technique for more efficient and cost-effective solar cells. This computational study investigated two dimensions of rectangular silicon base anti-reflected nanostructure for ultra-thin film solar silicon cell efficiency enhancement. The introduced simulation procedure depends on numerical methods and Lumerical software. Impacts of the structure geometry, which was the width and height, on optical and electrical properties were investigated. It found that the geometry of the structure has a significant effect on the absorption and reflection spectrum, due to structure light-trapping effects, and the maximum absorption increases in visible regain reported at a width of 300 nm and height of 100 nm. We also determined the fill factor, short circuit current, and open circuit voltage. It is found that the short circuit current density is significantly influenced by the structure geometry due to a change in absorption, which influences electron-hole generation. It’s also found that the performance can be enhanced by choosing a suitable dimension for the suggested structure. The optimum efficiency enhancement achieved was from 8.71% to 11.89%, and the obtained results are encouraging for using the presented procedure to design more complex structures.
References
1. Luo Y, Chen G, Chen S, Ahmad N, Azam M, Zheng Z, Su Z, Cathelinaud M, Ma H, Chen Z, Fan P, Zhang X, Liang G. Carrier transport enhancement mechanism in highly efficient antimony selenide thin-film solar cell. Adv Funct Mater. 2023;33(14):2213941. https://doi.org/10.1002/adfm.202213941
2. Chen X, Che B, Zhao Y, Wang S, Li H, Gong J, Chen G, Chen T, Xiao X, Li J. Solvent‐assisted hydrothermal deposition approach for highly‐efficient Sb₂(S, Se)₃ thin‐film solar cells. Adv Energy Mater. 2023;13(21):2300391. https://doi.org/10.1002/aenm.202300391
3. Hassan Q, Viktor P, Al-Musawi TJ, Ali BM, Algburi S, Alzoubi HM, Al-Jiboory AK, Sameen AZ, Salman HM, Jaszczur M. The renewable energy role in the global energy transformations. Renew Energy Focus. 2024 Mar 1;48:100545. https://doi.org/10.1016/j.ref.2024.100545
4. Khaleel IH, Alkhafaji AA, Miran HA, Jaf ZN. Synthesis, characterization, photoluminescence, and antibacterial activities of silica-graphene oxide composites. Can J Phys. 2021;99(12):1105-1113. https://doi.org/10.1139/cjp-2020-0538
5. ElKhamisy K, Abdelhamid H, El-Rabaie ES, Abdel-Salam NA. Comprehensive survey of silicon thin-film solar cell: Challenges and novel trends. Plasmonics. 2024 Feb;19(1):1-20. https://doi.org/10.1007/s11468-023-01905-x
6. Kumar CM, Singh S, Gupta MK, Nimdeo YM, Raushan R, Deorankar AV, Kumar TA, Rout PK, Chanotiya CS, Pakhale VD, Nannaware AD. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain Energy Technol Assess. 2023 Feb 1;55:102905. https://doi.org/10.1016/j.seta.2022.102905
7. Roy P, Sinha NK, Tiwari S, Khare A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol Energy. 2020 Mar 1;198:665-688. https://doi.org/10.1016/j.solener.2020.01.080
8. Korany FM, Hameed MF, Hussein M, Mubarak R, Eladawy MI, Obayya SS. Conical structures for highly efficient solar cell applications. J Nanophotonics. 2018 Jan 1;12(1):016019. https://doi.org/10.1117/1.JNP.12.016019
9. Hasan AB, Ali MA. Improve performance of solar cell by using grooves which have semicircular shape on the surface by using program (ZEMAX). Ibn Al-Haitham J Pure Appl Sci. 2016;29(1). https://www.iasj.net/iasj/article/110873
10. Sarkara P, Pandab S, Majia B, Mukhopadhyay AK. Plasmon induced quantified agglomeration of SiO₂ nanoparticles to improve efficiency in solar cells. J Ovonic Res. 2022 Nov 1;18(6):723-730. https://chalcogen.ro/723_SarkarP.pdf
11. Pritom YA, Sikder DK, Zaman S, Hossain M. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells. Nanoscale Adv. 2023;5(18):4986-4995. https://doi.org/10.1039/D3NA00436H
12. Al-Rubaiee M, Plaza GS. Optimizing the radius of curvature of black silicon peaks for solar cells using Matlab simulations. Iraqi J Sci. 2021 Dec 23;4272-7. https://www.iasj.net/iasj/download/5be01feb1a3f67d9
13. Matrood HM, Ail NT, Awaad AA. The effect of laser heating and overcasting deposition on the efficiency of plasmonic solar cell with noble metallic nanostructures. Iraqi J Sci. 2021 Dec 23;4240-8. https://www.iasj.net/iasj/download/08f7b150e33a2ce0
14. Abd Ali NN, Al-Agealy HJ, Moghaddam HM. Theoretical calculation of the fill factor of N749/[TiO]₂ solar cells. Ibn AL-Haitham J Pure Appl Sci. 2023 Oct 20;36(4):147-158 https://www.iasj.net/iasj/download/22fc86e45ab3bd4f
15. Assi AA, Saleh WR, Mohajerani E. Effect of deposit Au thin layer between layers of perovskite solar cell on cell's performance. Iraqi J Phys. 2021 Dec;19(51):23-32. https://www.iasj.net/iasj/download/1f53ab9ffc320a95
16. Amalathas PA, Alkaisi MM. Nanostructures for light trapping in thin film solar cells. Micromachines. 2019 Sep 17;10(9):619. https://doi.org/10.3390/mi10090619
17. Sellam M, Rasheed M, Azizii S, Saidani T. Improving photocatalytic performance: Creation and assessment of nanostructured SnO₂ thin films, pure and with nickel doping, using spray pyrolysis. Ceram Int. 2024 Jun 15;50(12):20917-20935. https://doi.org/10.1016/j.ceramint.2024.03.094
18. Khan MT. Unraveling the impact of graphene nanostructures passivation on the electrical properties of the perovskite solar cell. Mater Sci Semicond Process. 2023 Jan 1;153:107172. https://doi.org/10.1016/j.mssp.2022.107172
19. Saurabh S, Hossain MK, Singh S, Agnihotri SK, Samajdar DP. Optical performance analysis of InP nanostructures for photovoltaic applications. RSC Adv. 2023;13(15):9878-9891. https://doi.org/10.1039/D3RA00039G
20. Assi AA, Saleh WR, Mohajerani E. Effect of deposit Au thin layer between layers of perovskite solar cell on cell's performance. Iraqi J Phys. 2021 Dec;19(51):23-32. https://www.iasj.net/iasj/download/1f53ab9ffc320a95
21. Alesa HJ, Aldabbag BM, Salih RM. Natural pigment–poly vinyl alcohol nano composites thin films for solar cell. Baghdad Sci J. 2020 Sep 17;17(3):832-840. https://www.iasj.net/iasj/download/b87d682eb5a2b2fa
22. Ammar MH, Ons C, Ismail I. Promoting solar cell efficiencies via employing silver-carbon-pomegranate peel nanosystem. Baghdad Sci J. 2019;16(2). https://doi.org/10.21123/bsj.2019.16.2.0370
23. Jabbar MA, Alwan TJ. Design of anti-reflection coatings for application in the infrared region (10.6 microns). Iraqi J Sci. 2020 Nov 28;2897-2902. https://www.iasj.net/iasj/download/22e78630071955f9
24. Mahdi MA. Fabrication and characterization of silicon nanowires heterojunction solar cell. Iraqi J Phys. 2023 Sep 21;21(3):92-101. https://doi.org/10.30723/ijp.v21i3.1126
25. Hamdani AA. Experimental comparison for the performance of circular and square solar cells. Ibn AL-Haitham J Pure Appl Sci. 2017 Sep 22;21(1):24-30. https://jih.uobaghdad.edu.iq/index.php/j/article/view/1368
26. Rao KU, Reddy CA, Lakshmi GC, Vaishnavi G. Efficiency enhancement of the solar cells through subwavelength scaled biomimicked moth eye patterning using Lumerical solutions. Mater Today Proc. 2017 Jan 4;4(9):10407-10411. https://doi.org/10.1016/j.matpr.2017.06.389
27. Yuan Z, Li X, Jing H. Absorption enhancement of thin-film solar cell with rectangular Ag nanoparticles. J Appl Sci. 2014 Aug 14;14(8):823-827. https://scialert.net/abstract/?doi=jas.2014.823.827
28. Tabrizi AA, Pahlavan A. Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt Commun. 2020 Jan 1;454:124437. https://doi.org/10.1016/j.optcom.2019.124437
29. Rassekh M, Shirmohammadi R, Ghasempour R, Astaraei FR, Shayesteh SF. Effect of plasmonic aluminum nanoparticles shapes on optical absorption enhancement in silicon thin-film solar cells. Phys Lett A. 2021 Aug 27;408:127509. https://doi.org/10.1016/j.physleta.2021.127509
30. Mohsin AS, Mobashera M, Malik A, Rubaiat M, Islam M. Light trapping in thin-film solar cells to enhance the absorption efficiency using FDTD simulation. J Opt. 2020 Dec;49:523-532. https://doi.org/10.1007/s12596-020-00656-w
31. Anwar F, Afrin S, Satter SS, Mahbub R, Ullah SM. Simulation and performance study of nanowire CdS/CdTe solar cell. Int J Renew Energy Res. 2017 Jun 18;7(2):885-893. https://www.ijrer.org/ijrer/index.php/ijrer/article/view/5688
32. Kowsari A, Saghaei H. Resonantly enhanced all‐optical switching in microfibre Mach–Zehnder interferometers. Electron Lett. 2018 Feb;54(4):229-231. https://doi.org/10.1049/el.2017.4056
33. Liu Y, Li Y, Wu Y, Yang G, Mazzarella L, Procel-Moya P, Tamboli AC, Weber K, Boccard M, Isabella O, Yang X, Sun B. High-efficiency silicon heterojunction solar cells: Materials, devices and applications. Mater Sci Eng R Rep. 2020 Oct 1;142:100579. https://doi.org/10.1016/j.mser.2020.100579
34. Palik ED. Handbook of optical constants of solids. Academic Press; 1998. Available from: https://shop.elsevier.com/books/handbook-of-optical-constants-of-solids/palik/978-0-08-053378-0
35. Dhaliah D, Xiong Y, Sipahigil A, Griffin SM, Hautier G. First-principles study of the T center in silicon. Phys Rev Mater. 2022 May;6(5):L053201. https://doi.org/10.1103/PhysRevMaterials.6.L053201
36. Eskandari M, Shamsi A. Absorption enhancement of ultra-thin film solar cells using Fabry-Perot and plasmonic modes. Phys Scr. 2023 Sep 18;98(10):105521. https://iopscience.iop.org/article/10.1088/1402-4896/acf52e/meta
37. Saravanan S, Dubey RS. Study of ultrathin‐film amorphous silicon solar cell performance using photonic and plasmonic nanostructures. Int J Energy Res. 2022 Mar 10;46(3):2558-2566. https://doi.org/10.1002/er.7328
38. Oteki Y, Okada Y. External-quantum-efficiency enhancement in quantum-dot solar cells with a Fabry–Perot light-trapping structure. Heliyon. 2023 Aug 1;9(8). https://www.cell.com/heliyon/fulltext/S2405-8440(23)06520-9
39. Prashant DV, Agnihotri SK, Samajdar DP. Geometric optimization and performance enhancement of PEDOT: PSS/GaAs NP array based heterojunction solar cells. Opt Mater. 2021 Jul 1;117:111080. https://doi.org/10.1016/j.optmat.2021.111080
40. Shen X, Wang S, Zhou H, Tuokedaerhan K, Chen Y. Improving thin film solar cells performance via designing moth-eye-like nanostructure arrays. Results Phys. 2021 Jan 1;20:103713. https://doi.org/10.1016/j.rinp.2020.103713
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms