Analysis of the Electrical Conductivity Mechanisms and Energy Density of States in Ternary Chalcogenide Alloy S60-Se40-X-PbX
DOI:
https://doi.org/10.30526/38.3.4035Keywords:
D.C conductivity, Density, Fermi states, Tail width, Chalcogenide, Hopping distanceAbstract
We studied in this investigation the changes of the continuous conductivity of the electricity (σd.c) due to substituting part of Selenium with Lead in an S60-Se40-X-PbX alloy at weight ratios x = 0, 10, 20, and 30. Our investigation includes an examination of σd.c. mechanisms in chalcogenide semiconductors and governing the equations of the continuous D.C. electrical conductivity, and the application of these measured characteristics of S60-Se40-X-PbX glasses to assess Lead's impact on extended, local, and Fermi energy state densities. Some procedures were applied to the materials, such as mixing, grinding, heating in quartz ampoules, placing them in a furnace, and heating them at 360°C. The results showed that electrical conduction occurs in three modes (conduction at high temperatures in the extended state, conduction at moderate temperatures in the local state, and conduction at low temperatures in the variable range hopping (VRH).
References
1. Chillab RK, Jahil SS, Wadi KM, Jasim KA, Shaban AH. Fabrication of Ge30Te70–xSbX glasses alloys and studying the effect of partial substitution on DC electrical energy parameters. Key Eng Mater. 2021 Oct 20;900:163–71. https://doi.org/10.4028/www.scientific.net/KEM.900.163.
2. Jasim KA, Hussein HS, Aneed SH, Salman EM. Examination of the Impact of Substituting Germanium for Bismuth on the Energy Density and Electrical Conductivity of the Se60Ge40–xBix Alloy. Korean J Mater Res. 2024;34(6):267–74. https://doi.org/10.3740/MRSK.2024.34.6.267.
3. Abd Al-hadi Z, Jasim KA. The Effect of Partial Substitution of Ge-S-Cd Alloys on the Density of Energy States. Ibn Al-Haitham J Pure Appl Sci. 2024 Jan 20;37(1):140–147. https://doi.org/10.30526/37.1.3314.
4. Davis EA. Non-crystalline materials. Endeavour. 1977 Jan 1;1(3–4):103–106. https://doi.org/ 10.1016/0160-9327(77)90167-3.
5. Liu YK, Zapien JA, Shan YY, Geng CY, Lee CS. Wavelength-controlled lasing in ZnxCdl−xS single-crystal nanoribbons. Adv Mater. 2005;17(11):1372–1377. https://doi.org/10.1002/adma. 200401606.
6. Seddon AB. Chalcogenide glasses: a review of their preparation, properties and applications. J Non-Cryst Solids. 1995 May 1;184:44–50. https://doi.org/10.1016/0022-3093(94)00686-5.
7. Soltan AS, Moharram AH. Electrical switching in the chalcogenide As60–xTe40Cux glasses. Phys B Condens Matter. 2004;349(1–4):92–99. https://doi.org/10.1016/j.physb.2004.01.155.
8. Kumar S, Hussain M, Zulfequar M. Optical and other physical characteristics of amorphous Se-Te-Sn alloys. Physica B. 2006;371:193. https://doi.org/10.1016/j.mssp.2015.05.005.
9. Abdulateef NA, Alsudani A, Chillab RK, Jasim KA, Shaban AH. Calculating the mechanisms of electrical conductivity and energy density of states for Se85Te10Sn5–xInx glasses. J Green Eng. 2020;10(9):5487–5503.
10. Ahmed BA, Mohammed JS, Fadhil RN, Jasim KA, Shaban AH, Al Dulaimi AH. The dependence of the energy density states on the substitution of chemical elements in the Se6Te4–xSbx thin film. Chalcogenide Lett. 2022;19(4):301–308. https://doi.org/10.15251/cl.2022.194.301.
11. Juejun H, Xiaochen S, Agarwal AM, Viens JF, Kimerling LC, Petit L, et al. Studies on structural, electrical, and optical properties of Cu-doped As–Se–Te chalcogenide glasses. J Appl Phys. 2007;101(6):063520. https://doi.org/10.1063/1.2712162.
12. Jasim KA, Naser RF. The effects of micro-aluminum fillers in epoxy resin on the thermal conductivity. J Phys Conf Ser. 2018;1003(1):012082. https://doi.org/10.1088/1742-6596/1003 /1/012082.
13. Gonçalves AP, Lopes EB, Delaizir G, Godart C. Semiconducting glasses: a new class of thermoelectric materials. AIP Conf Proc. 2012. https://doi.org/10.1063/1.4731568.
14. Zhao L, Wang X, Fei FY, Wang J, Cheng Z, Dou S, et al. High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique. J Mater Chem A. 2015. https://doi.org/10.1039/C5TA01667C.
15. Biswas D, Singh YB, Hazra SK, Ghosh BK, Das AS, Mondal R, . Influence of Sb doping on thermal properties and electrical conductivity mechanism of SbxSe50–xSn20Te30 chalcogenide glassy systems. J Non-Cryst Solids. 2024 Jun 1;633:122953. https://doi.org/10.1016/j.jnoncrysol. 2024.122953.
16. Huang PY, Kurasch S, Alden JS, Shekhawat A, Alemi AA, McEuen PL. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science. 2013;342:3–6. https://doi.org/10.1126/science.1242248.
17. Ellote SR. Electrical conduction mechanism in Se90–xTe5Sn5Inx (x=0, 3, 6, and 9) multi-component glassy alloys. AIP Adv. 2015;5:087164. https://doi.org/10.1063/1.4929577.
18. Cohen MH, Fritzsche H, Ovshinsky SR. Simple band model for amorphous semiconducting alloys. Phys Rev Lett. 1969;22:1065. https://doi.org/10.1103/PhysRevLett.22.1065.
19. Khudhair NH, Jasim KA. Preparation and study the effect of Sb on the energy density of states of Se60Te40. In: Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES22Fr); 2023. https://doi.org/10.1063/5.0129550.
20. Street RA, Mott NF. States in the gap in glassy semiconductors. Phys Rev Lett. 1975;35:1293–6. https://doi.org/10.1103/PhysRevLett.35.1293.
21. Mauro JC, Loucks RJ, Varshneya AK, Gupta PK. Enthalpy landscapes and the glass transition. Lect Notes Comput Sci Eng. 2009;68. https://doi.org/10.1007/978-1-4020-9741-6_15.
22. Kadhim BB, Risan RH, Shaban AH, Jasim KA. Electrical characteristics of nickel/epoxy-unsaturated polyester blend nanocomposites. AIP Conf Proc. 2019;2062. https://doi.org/10.1063/1.5116989.
23. Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H. Ultrafast synaptic events in a chalcogenide memristor. Sci Rep. 2013;3:1619. https://doi.org/10.1038/srep01619.
24. Khudhair NH, Jasim KA. A study of the effectiveness of tin on the thermal conductivity coefficient and electrical resistance of Se60Te40–xSnx chalcogenide glass. Ibn Al-Haitham J Pure Appl Sci. 2023 Jan 20;36(1):149–157. https://doi.org/10.30526/36.1.2892.
25. Elliott GR, Murugan GS, Wilkinson JS, Zervas MN, Hewak DW. Chalcogenide glass microsphere laser. Opt Express. 2010;18(25):26720–26727. https://doi.org/10.1364/OE.18.026720.
26. Hegab NA, Afifi MA, Atyia HE, Farid AS. AC conductivity and dielectric properties of amorphous Se80Te20–xGex chalcogenide glass film compositions. J Alloys Compd. 2009 May 27;477(1–2):925–930. https://doi.org/10.1016/j.jallcom.2008.11.129.
27. Pattanayak P, Asokan S. Signature of a silver phase percolation threshold in microscopically phase-separated ternary Ge0.15Se0.85–xAgx (0≥x≥0.20) glasses. J Appl Phys. 2005;97(1):13–16. https://doi.org/10.1063/1.1827341.
28. Mohammed LA, Neamah ZJ, Watan AW, Jasim KA, Shaban AH. Determination of continuous electrical conductivity parameters and their influence on partial replacement of antimony with Sn in the Ge20Te72In8 chalcogenide glass. Int J Nanoelectron Mater. 2024 Jul 12;17(3):323–326. https://doi.org/10.58915/ijneam.v17i3.1012.
29. Frumar M, Wagner T. Ag-doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci. 2003;7(March):117–26. https://doi.org/10.1016/S1359-0286(03)00044-5.
30. Jain Y, Kurchania R. Pressure-induced band gap enhancement and temperature-dependent thermoelectric characterization of semiconducting Transition Metal Chalcogenides LiMS (M = Cu, Ag). Mater Sci Semicond Process. 2025;186:109030. https://doi.org/10.1016/j.mssp.2024.109030
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms