Preparation and Study of Undoped and Al-Doped on The Structure and the Optical Properties of In₂S₃ Thin Film

Authors

DOI:

https://doi.org/10.30526/38.3.4110

Keywords:

Chalcopyrite semiconductors, n- In2S3, Al Doped Thin film, XRD, AFM, Band gaps In2S3, Thin film

Abstract

Undoped and aluminum-doped In2S3 chalcopyrite semiconductor thin films are deposited on glass substrates using the thermal evaporation process under a vacuum of 1.6×10^-5 mbar, achieving a thickness of 500 nm. This study examines the impact of varying Al ratios of 0.0, 0.02 and 0.04 on properties of Al-doped In2S3 thin film. The structural characteristics of In2S3 thin films were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM), revealing that the In2S3 film exhibits a polycrystalline structure and stable tetragonal β-In2S3, with a preferred orientation of (109) at 2θ = 27.3. Furthermore, AFM is examining the exterior morphology of the film, revealing that both surface roughness and average diameter escalate with higher Al ratios, hence augmenting the crystallite size of the thin films. The UV/Vis spectrophotometer analyzed the optical properties of In2S3 films, revealing a maximum absorbance of 90% in the visible spectrum and a minimum transmittance. The films exhibited a bandgap that decreased by 0.04 for each ratio of Al, ultimately reaching a minimum value of Semiconductors In2S3 possess straight band gaps of 2.05, 1.98, and 1.95 eV, respectively. The computed optical constant encompasses the refractive index and the extinction coefficient. Real and imaginary components of the dielectric constant.

Author Biographies

  • Dhuha M. Abdullah, Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

  • Bushra H. Hussein, Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

References

1. Alamoudi E, Timoumi A, Parida P, Ganguli B. The synthesis and the effect of Cu on optoelectronic qualities of β-In2S3 as a window layer for CIGS thin film solar cells. Results Phys. 2022;40: 105858. https://doi.org/10.1016/j.rinp.2022.105858

2. Mohd Sh, Altowyan AS, Maiz F, Hakami J. Influence of incorporation of samarium (Sm3+) on the structural and optoelectronic properties of In2S3 thin film for photodetector applications. J. Photochem. Photobiol. A Chem. 2023; 441: 114736. https://doi.org/10.1016/j.jphotochem .2023.114 736

3. Rodríguez-Hernández PE, Quiñones-Galván JG, Marasamy L, Morales-Luna M, Santos-Cruz J, Arias-Cerón JS, Zelaya-Angel O, de Moure-Flores F. Optoelectronic properties of undoped and Al, B and Ga-doped In2S3 thin films grown by CBD on flexible PET/ITO substrates, J. Mater. Sci. Sem. Prog. 2019 ;103(15): 104600, https://doi.org/10.1016/j.mssp.2019.104600

4. Alagarasan D, Hegde SS, Naik R, Murahari P, Shetty HD, Alkallas FH, Ben A, Trabelsi G, Khan FS, AlFaify S, Shkir M. Fabrication of Bi-doped In2S3 thin films for highly sensitive UV photodetector applications, Journal of Photochemistry and Photobiology. 2024 ; 454 : 115697. https: //www.sciencedirect.com/science/article/abs/pii/S1010603024002417

5. Atre PP, Desai MA, Vyas Akshay N, Sartale SD, Pawar BN. Deposition of β-In2S3 Photosensitive Thin Films by Ultrasonic Spray Pyrolysis, Journal of ES Energy and Environment, 2021; 12: 52-59. https://www.espublisher.com/journals/articledetails/403/

6. Hsiao, YJ, Lu CH, Ji LW, Meen TH, Chen YL, Chi HP. Characterization of photovoltaics with In2S3 nanoflakes/p-Si heterojunction. Nanoscale Res. Lett. 2014; 9(32): 1-7. https://link.springer. com/arti cle/10.1186/1556-276X-9-32

7. Thierno S, Bouchaib H, Bernabe M, Mollar M, Larbi L, Mounir F. Elaboration and characterization of In2S3 thin films by spray pyrolysis with [S]/[In]=3 ratio. IEEE 2013; 978: 1-4673-6374. https:// ieeexplore.ieee.org/document/6529664

8. Pulipaka S, Koushik AKS, Deepa M, Meduri P. Enhanced photoelectrochemical activity of Co-doped β-In2S3 nanoflakes as photoanodes for water splitting. RSC Adv. 2019; 9(3): 1335–1340. https://pubmed.ncbi.nlm.nih.gov/35518026/

9. Rodriguez-Hernandez PE, Moure-Flores FDE, Guillen Cervantes A, Campos-Gonzalez E, Santos-Cruz J, Mayen-Hernandez SA, Arias-Ceron JS, Olvera MDelal, Zelaya-Ángel O, Contreras-Puented G. Physical Properties Of In2S3 Thin Films Grown By Chemical Bath Deposition At Different Temperatures. Chal. Lett. 2016; 13(8): 389 – 396. https://www.chalcogen.ro/389_RodriguezPE.pdf

10. Rasool S, Saritha K, Ramakrishna Reddy KT, Ramakrishna Reddy K, Bychto L, Patryn A, Maliński M, Tivanov MS, Gremenok VF. Optical properties of thermally evaporated In2S3 thin films measured using photoacoustic spectroscopy. Materials Science in Semiconductor Processing 2017; 4-8. http://dx.doi.org/10.1016/j.mssp.2017.09.009

11. Souissi R, Bouguila N, Bendahan M, Fiorido T, Aguir K, Kraini M, Vázquez-Vázquez C, Labidi A. Highly sensitive nitrogen dioxide gas sensors based on sprayed β-In2S3 film. Sensors and Actuators B: Chemical. 2020;319(15): 128280. https://doi.org/10.1016/j.snb.2020.128280

12. Kraini M, Bouguila N, El Ghoul J. Nickel doping effect on properties of sprayed In2S3 films. Indian J Phys 2018;92(8):989–997. https://link.springer.com/article/10.1007/s12648-018-1195-3

13. Karthikeyan S, Hill AE, Pilkington RD. Low temperature pulsed direct current magnetron sputtering technique for single phase β-In2S3 buffer layers for solar cell applications. Applied Surface Science, 2017;418:199-206 https://colab.ws/articles/10.1016%2Fj.apsusc.2017.01.147

14. Mughal MA, Alqudsi A, Rao PM, Masroor M, Ichwani R, Zhou L, Giri B, All-electrodeposited p-Cu2ZnSnS4/n-In2S3 Heterojunction Formation for Solar Cell Applications. IEEE. 2018; 142-147. https://10.1109/PVSC.2018.8548079

15. Sterner J, Malmström J, Stolt L. Study on ALD In2S3/Cu (In, Ga) Se2 interface formation. Progress in Photovoltaics: Research and Applications. 2005; 13(3):179-193. https://onlinelibrary.wiley. com/ doi/abs/10.1002/pip.595

16. Akcay N, Erenler B, Ozen Y, Gremenok V, Buskis KP, Ozcelik S. Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Journal of Science. 2023; 36:1351-1367. https://doi.org/10.35378/gujs.1075405

17. Khudayer IH, Hussien BH. Study of Some Structural and Optical Properties of AgAlSe2 Thin Films. Ibn AL-Haitham J Pure Appl Sci. 2017;29(2):41–51. https://www.iasj .net/iasj/ download/ d06fb 3c 7d8db8a28

18. Al-Maiyaly BKH. characterization of n-CdO: Mg/p-Si heterojunction dependence on annealing temperature. Ibn AL-Haitham J Pure Appl Sci. 2017;29(3):14–25. https://jih.uobaghdad. Edu .iq/ index.php/j/article/view/8

19. 19. Hübschen G, Altpeter I, Tschuncky R, Herrmann HG.Materials characterization using nondestructive evaluation (NDE) methods. 2nd ed. Woodhead publishing; 2016. ISBN: 9780081000571

20. 20. Athab RH, Hussein BH. Fabrication and investigation of zinc telluride thin films. Chalcogenide Lett. 2023;20(7):477–85. https://doi.org/10.15251/CL.2023.207.477

21. Hussein BH, Khudayer IH, Mustafa MH, Shaban AH. Effect of V, In and Cu doping on properties of p-type ZnSe/Si heterojunction solar cell. Prog Ind Ecol An Int J. 2019;13(2):173–86. https://doi.Org /10.1504/PIE.2019.099358

22. Hussein BH, Hassun HK. GROWTH AND OPTOELECTRONIC PROPERTIES OF p-CuO:Al/n-Si HETEROJUNCTION. J Ovonic Res. 2020;16(5):267–71. https://chalcogen.ro/ 267-Maiyaly BKH .pdf

23. Hussein BH, Hassun HK, Maiyaly BK, Aleabi SH. Effect of copper on physical properties of CdO thin films and n-CdO: Cu/p-Si heterojunction. J Ovonic Res. 2022;18:37–42. https://doi.org/10.15 251/JOR.2022.181.37

24. Sze SM, Li Y, Ng KK. Physics of semiconductor devices. 3rd ed. John wiley & sons; 2021. ISBN: 9780470068328, https://doi.org/10.1002/0470068329.

25. Schroder DK. Semiconductor material and device characterization. 3rd ed. John Wiley & Sons; 2015. ISBN:9780471749097, https://doi.org/10.1002/0471749095.

26. Akcay N, Erenler B , Ozen Y, Gremenok VF , Buskis KP and Ozcelik S. Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Journal of Science. 2023; 36: 1351-1367. https://doi.org/10.35378/gujs.1075405

27. Kim K, Ahn SK, Choi JH, Yoo J, Eo YJ, Cho JS, et al. Highly efficient Ag-alloyed Cu (In, Ga) Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy. 2018;48:345–52. https://doi.org/10.1016/j.nanoen.2018.03.052

28. Ahmed GS, Hussein BH, Hassun HK, Salman EMT, Athab RH. Fabrication and Improvement of Optoelectronic Properties of Copper Chalcogenide Thin Films. Iraqi J Appl Phys. 2023;19(4):223–8. https://doi.www.iasj.net/iasj/article/284872

29. Tigau N, Ciupina V, Prodan G, Rusu GI, Gheorghies C, Vasile E. The influence of heat treatment on the electrical conductivity of antimony trioxide thin films. J Optoelectron Adv Mater. 2003;5(4):907–12. https://doi.old.joam.inoe.ro/arhiva/pdf5_4/Tigau.pdf

30. Sobhi SN, Hussein BH. Study the Influence of Antimony Dopant and Annealing on Structural, Optical and Hall Parameters of AgInSe2 Thin Film. Ibn AL-Haitham J Pure Appl Sci. 2022;35(3):16–24. https://doi.org/10.30526/35.3.2824

31. Athab RH, Hussein BH. Growth and Characterization of Vacuum Annealing AgCuInSe2 Thin Film. Ibn AL-Haitham J Pure Appl Sci. 2022;35(4):45–54. https://doi.org /10 .30526/ 35.4.2868

Downloads

Published

20-Jul-2025

Issue

Section

Physics

How to Cite

[1]
Mohammed Abdullah, D. and Hussein, B.H. 2025. Preparation and Study of Undoped and Al-Doped on The Structure and the Optical Properties of In₂S₃ Thin Film. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 3 (Jul. 2025), 207–216. DOI:https://doi.org/10.30526/38.3.4110.