Optical and Morphology Properties of Cu2Se at Different Temperatures by Thermal Evaporation
DOI:
https://doi.org/10.30526/38.4.4122Keywords:
Cu2Se thin film, Thermal evaporation technique, Energy gap, XRD, Optical parametersAbstract
A low-cost thermal evaporation deposition technique has been used for the preparation of Cu2Se thin films on glass substrates at RT with a thickness of 500 nm. Structural and optical properties of these films were investigated. Structural characterization of the films was done using X-ray diffraction XRD analyses, atomic force microscopy AFM was used for the morphological characterization of the film samples, and UV-Vis spectroscopy was also used for the characterization of the samples. The films have been treated at different temperatures (403, 453 &503) K for 1 hour. X-ray diffraction (XRD-with wavelength 1.54 A) study of these films suggests a cubic structure and has prominent (220) orientation. And AFM analysis, it is evident that Cu2se films are polycrystalline, and that crystallite size and average grain size for films after annealing were increasing. The optical absorption coefficient (α) of the films was determined from absorbance spectra in the range of wavelengths (400-1100) nm. The deposited films showed transmittance (∼18%) and a direct band gap of about 2.2 eV. The structure and the optical properties of the films may find practical applications in the field of renewable energy
References
1. Liu WD, Yang L, Chen ZG. Cu₂Se thermoelectrics: property, methodology, and device. Nano Today. 2020;35:100838. https://doi.org/10.1016/j.nantod.2020.100938.
2. Nelson PI, Arthi R, Kannan RR, Selvan TP, Ajitha E, Ashina A, Vidhya B. Influence of heat treatment on the properties of thermally evaporated copper selenide thin films. Materials Letters. 2018;4(18):30520–2. https://doi.org/10.1016/j.matlet.2018.03.148.
3. Piyasin P, Palaporn D, Kurosaki K, Pinitsoontorn S. High-performance thermoelectric properties of Cu₂Se fabricated via cold sintering process. Solid State Sciences. 2024;149:107448. https://doi.org/10.1016/j.solidstatesciences.2024.107448.
4. Ghobadi N, Hatam EG. Optical band gap, photocatalysis, surface structures and depth profile properties of Cu₂Se nanostructured thin films. Mater Res Express. 2022;9:035007. https://doi.org/10.1088/2053-1591/ac5f36.
5. Pejjai B, Reddy VRM, Kotte TRR, Park C. Facile and eco-friendly synthesis of water-soluble Cu₂₋ₓSe nanoparticles for photovoltaic applications. Mater Sci Semicond Process. 2020;112:105013. https://doi.org/10.1016/j.mssp.2020.105013.
6. Qin Y, Yang L, Wei J, Yang S, Zhang M, Wang X, Yang F. Doping effect on Cu₂Se thermoelectric performance: a review. Materials. 2020;13:5704. https://doi.org/10.3390/ma13245704.
7. Moger SN, Mahesha MG. Characterization of thermally evaporated copper selenide thin films for device applications. Materials Today: Proceedings. 2022;55:22–5. https://doi.org/10.1016/j.matpr.2021.11.644.
8. Patel U, Gupta P, Sujata KM, Solanki RG. Structural and optical properties of copper selenide nanolayered tiles. Materials Today: Proceedings. 2023;80:1243–7. https://doi.org/10.1016/j.matpr.2022.12.220.
9. Zhao K, Guan M, Qiu P, Blichfeld AB, Eikeland E, Zhu C, Chen L. Thermoelectric properties of Cu₂Se₁₋ₓTeₓ solid solutions. J Mater Chem A. 2018;6:7202–10. https://doi.org/10.1039/C8TA01313F.
10. Kaur H, Kaur J, Singh L, Singh S. Electrochemical synthesis and characterization of Cu₂Se nanowires. Superlattices Microstruct. 2013;64:294–302. https://doi.org/10.1016/j.spmi.2013.09.042.
11. Terlemezoğlu M. A study on the structural, morphological and optical properties of Cu₂₋ₓSe thin films deposited by thermal evaporation. BSEU J Sci. 2021;8(2):1057–63. https://doi.org/10.35193/bseufbd.1024354.
12. Jagminas A. Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores. J Cryst Growth. 2006;294:343–8. https://doi.org/10.1016/j.jcrysgro.2006.06.013.
13. Kaur H, Kaur J, Singh L. Influence of different deposition potential on the structural and optical properties of copper selenide nanowires. Superlattices Microstruct. 2016;97:85–93. https://doi.org/10.1016/j.spmi.2016.04.036.
14. Henry J, Daniel T, Balasubramanian V, Mohanraj K, Sivakumar G. Electrical and optical properties of Sb-doped Cu₂Se thin films deposited by chemical bath deposition. Phase Trans. 2020;93(8). https://doi.org/10.1080/01411594.2020.1789918.
15. Gosavi SR, Deshpande NG, Gudage YG, Sharma R. Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature. J Alloys Compd. 2008;448:344–8. https://doi.org/10.1016/j.jallcom.2007.03.068.
16. Al-Mamun M, Islam A, Bhuiyan H. Structural, electrical and optical properties of copper selenide thin films deposited by chemical bath deposition technique. J Mater Sci Mater Electron. 2005;16:263–8. https://doi.org/10.1007/s10854-005-0543-1.
17. Yang L. Thermoelectric properties of Cu₂Se nano-thin film by magnetron sputtering. Materials. 2021;14:2075. https://doi.org/10.3390/ma14082075.
18. Ali S, Hassun HK, Salih AA, Athab RH, Al-Maiyaly BKH, Hussein BH. Study the properties of Cu₂Se thin films for optoelectronic applications. Chalcogenide Lett. 2022;19:663–71. https://doi.org/10.15251/CL.2022.1910.663.
19. Babu NJ, Abdul Khadar M. Deposition of nanocrystal thin films of Cu₂Se and their optical and electrical characterization. Appl Surf Sci. 2019;474:34–41. https://doi.org/10.1016/j.apsusc.2018.06.158.
20. Sobhi SN, Hussein BH. Study the influence of antimony dopant and annealing on structural, optical and Hall parameters of AgInSe₂ thin film. Ibn Al-Haitham J Pure Appl Sci. 2022;35(3). https://doi.org/10.30526/35.3.2824.
21. Hua X, Li J, Liu H, Zhang C, Han Y, Gao F, Liu SF. Preparation of Cu₂Se thin films by vacuum evaporation and hot-pressing. Vacuum. 2021;185:109947. https://doi.org/10.1016/j.vacuum.2020.109947.
22. Sobhi SN, Hussein BH. Effect of annealing on thin film AgInSe₂ solar cell. J Ovonic Res. 2022;18(4):519–26. https://doi.org/10.15251/JOR.2022.184.519.
23. Al-Maiyaly BKH. Characterization of n-CdO:Mg/p-Si heterojunction dependence on annealing temperature. Ibn Al-Haitham J Pure Appl Sci. 2016;29(3): 14-25. https://jih.uobaghdad.edu.iq/index.php/j/article/view/8.
24. Hassun HK, Al-Mariyah BK, Hussein BH, Moussa YK. Manufacture spectral responsivity of n-Fe₂O₃/p-Si heterojunction with effect Cl doping for high sensitive devices. J Ovonic Res. 2023;19(6):719–26. https://doi.org/10.15251/JOR.2023.196.719.
25. Hadi SM, Khudayer IH. Annealing effects on the structural and optical behavior of Cu₂Se₀.₈Te₀.₂ thin film. Chalcogenide Lett. 2024;21(11):885–93. https://doi.org/10.15251/CL.2024.2111.885.
26. Khudayer IH, Hussien BH. Study of some structural and optical properties of AgAlSe2 thin films. Ibn Al-Haitham J Pure Appl Sci. 2016;29(2): 41-51. https://jih.uobaghdad.edu.iq/index.php/j/article/view/83.
27. Athab RH, Hussein BH. Growth and characterization of vacuum annealing AgCuInSe2 thin film. Ibn Al-Haitham J Pure Appl Sci. 2022;35(4). https://doi.org/10.30526/35.4.2868.
28. Hadi SM, Khudayer IH. Structural and optical characterization of Cu₂Se₀.₈S₀.₂ thin films deposited by thermal evaporation. J Phys Conf Ser. 2024;2857:012047. https://doi.org/10.1088/1742-6596/2857/1/012047.
29. Soud AJ, Al-Maiyal BKH. Influence of annealing temperature on nano crystalline description for CuZnS thin films. Chalcogenide Lett. 2024;21(5):385–94. https://doi.org/10.15251/CL.2024.215.385.
30. Ali HM, Khudayer I. Preparation and analysis of Ag₂Se₁₋ₓTeₓ thin film structure on the physical properties at various temperatures by thermal evaporation. Chalcogenide Lett. 2023;20(3):197–203. https://doi.org/10.15251/CL.2023.203.197.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms