New Lifetime Alpha Power Rayleigh Weibull Distribution: Structure and Properties
DOI:
https://doi.org/10.30526/38.4.4065Keywords:
alpha-power family, Rayleigh Weibull distribution, survival function, moments about the origin, moment generating functionAbstract
Alpha power transformation family distributions (APT) are considered one of the modern transformations that have received the attention of researchers in the past decade and are concerned with adding a shape parameter. Based on APT, this paper proposes a new distribution by adding a new parameter to the two-parameter Rayleigh Weibull distribution, a new continuous distribution called alpha power Rayleigh Weibull distribution (APRWD) including three parameters where ρ is known as shape parameter and ɑ, δ as scale parameters. This paper also includes a presentation of the mathematical construction of the basic statistical functions: cumulative, probability density, survival, and hazard functions. We also include an expansion of the cumulative and probability density functions to use them in investigating and finding several mathematical statistical properties of (APRWD) such as moments, skewness, Kurtosis, moment generating, characteristics, mode, quantile, and factorial moments generating functions
References
1. Lee C, Famoye F, Alzaatreh AY. Methods for generating families of univariate continuous distributions in the recent decades. Wiley Interdiscip Rev Comput Stat. 2013;5(3):219–38. https://doi.org/10.1002/wics.1255
2. Mahdavi A, Kundu D. A new method for generating distributions with an application to exponential distribution. Commun Stat - Theory Methods. 2017;46(13):6543–57. https://doi.org/10.1080/03610926.2015.1130839
3. Nassar M, Alzaatreh A, Mead M, Abo-Kasem O. Alpha power Weibull distribution: Properties and applications. Commun Stat Methods. 2017;46(20):10236–52.https://doi.org/ 10.1080/03610926.2016.1231816
4. Elbatal I, Ahmad Z, Elgarhy M, Almarashi AM. A new alpha power transformed family of distributions: properties and applications to the Weibull model. J Nonlinear Sci Appl. 2018;12(01):1–20. https://doi.org/10.22436/jnsa.012.01.01.
5. Dey S, Ghosh I, Kumar D. Alpha-power transformed Lindley distribution: properties and associated inference with application to earthquake data. Ann Data Sci. 2019;6:623–50. https://doi.org/10.1007/s40745-018-0163-2
6. Ihtisham S, Khalil A, Manzoor S, Khan SA, Ali A. Alpha-Power Pareto distribution: Its properties and applications. PLoS One. 2019;14(6):e0218027. https://doi.org/10.1371/journal.pone.0218027
7. Eghwerido JT. The alpha power Teissier distribution and its applications. Afrika Stat. 2021;16(2):2733–47. https://www.ajol.info/index.php/afst/article/view/283087.
8. Basheer AM. Alpha power inverse Weibull distribution with reliability application. J Taibah Univ Sci. 2019;13(1):423–32. https://doi.org/10.1080/16583655.2019.1588488.
9. Saleh HM, Mohammed AT. Alpha power transformation family distributions: Properties and application to the exponential Weibull model. In: AIP Conference Proceedings. AIP Publishing; 2024. https://doi.org/10.1063/5.0236939.
10. Ali M, Khalil A, Ijaz M, Saeed N. Alpha-Power Exponentiated Inverse Rayleigh distribution and its applications to real and simulated data. PLoS One [Internet]. 2021;16(1):1–17. http://dx.doi.org/10.1371/journal.pone.0245253
11. A EL-Helbawy A, A Hegazy M, R AL-Dayian G. A New Family of Discrete Alpha Power Distributions. Scient J Comm Sect Al-Azhar Univ. 2022; 28(1): 158–90. https://doi.org/10.21608/jsfc.2022.299825
12. Kargbo M, Waititu A, Wanjoya A. The Generalized Alpha Power Exponentiated Inverse Exponential distribution and it’s application to real data. Authorea Prepr. 2023; https://doi.org/10.22541/au.168963153.36742019/v1
13. Ijaz M, Asim SM, Alamgir, Farooq M, Khan SA, Manzoor S. A gull alpha power weibull distribution with applications to real and simulated data. PLoS One. 2020;15(6):1–19. http://dx.doi.org/10.1371/journal.pone.0233080.
14. Kilai M, Waititu GA, Kibira WA, Alshanbari HM, El-Morshedy M. A new generalization of Gull Alpha Power Family of distributions with application to modeling COVID-19 mortality rates. Results Phys. 2022; 36:105339. https://doi.org/10.1016/j.rinp.2022.105339
15. Ahmad Z, Elgarhy M, Abbas N. A new extended alpha power transformed family of distributions: properties and applications. J Stat Model Theory Appl. 2020;1(1):13–27. https://doi.org/10.1016/j.rinp.2022.105339
16. Elbatal I, Cakmakyapan S, Ozel G. Alpha Power Odd Generalized Exponential Family of Distributions: Model, Properties and Applications. Gazi Univ J Sci. 2022;35(3):1171–88. https://doi.org/10.35378/gujs.868555.
17. ElSherpieny EA, Almetwally EM. The exponentiated generalized alpha power family of distribution: Properties and applications. Pakistan J Stat Oper Res. 2022;349–67. https://doi.org/10.18187/pjsor.v18i2.3515.
18. Gupta RD, Kundu D. Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biometrical J J Math Methods Biosci. 2001;43(1):117–30. https://doi.org/10.1002/1521-4036(200102)43:1%3C117::AID-BIMJ117%3E3.0.CO;2-R.
19. Ahmad Z, Ilyas M, Hamedani GG. The Extended Alpha Power Transformed Family of Distributions: Properties and Applications. J Data Sci. 2021;17(4):726–41. https://doi.org/10.6339/JDS.201910_17(4).0006.
20. Cordeiro GM, Ortega EMM, Lemonte AJ. The exponential–Weibull lifetime distribution. J Stat Comput Simul. 2014;84(12):2592–606. https://doi.org/10.1080/00949655.2013.797982.
21. Nasiru S. Serial Weibull Rayleigh distribution: theory and application. Int J Comput Sci Math. 2016;7(3):239–44. https://doi.org/10.1504/IJCSM.2016.077859.
22. Ashor NA, Mohammed MJ. Comparison between new lifetime Shanker-Weibull distribution and many other distributions. In: AIP Conference Proceedings. AIP Publishing; 2024; 3229: 080042. https://doi.org/10.1063/5.0236945.
23. Shatti RN, Al-Kinani IH. Estimating the Parameters of Exponential-Rayleigh Distribution under Type-I Censored Data. Baghdad Sci J. 2024;21(1):146. https://doi.org/10.21123/bsj.2023.7962.
24. Mohammed MJ, Hussein IH. Study of New Mixture Distribution [a]. In: Int, Conf, J Eng Apply Sci. 2018; 14(20):7566-7573. https://doi.org/10.36478/jeasci.2019.7566.7573.
25. Khalaf AA, Khaleel MA. The New Strange Generalized Rayleigh Family: Characteristics and Applications to COVID-19 Data. Iraqi J Comput Sci Math. 2024;5(3):92–107. https://doi.org/10.52866/ijcsm.2024.05.03.005.
26. Al-Habib KH, Khaleel MA, Al-Mofleh H. A new family of truncated nadarajah-haghighi-g properties with real data applications. Tikrit J Adm Econ Sci. 2023;19(61):2. http://www.doi.org/10.25130/tjaes.19.61.2.17.
27. Zain SA, Hussein IH. Estimate for Survival and Related Functions of Weighted Rayleigh Distribution. Ibn AL-Haitham J Pure Appl Sci. 2021;34(1). https://doi.org/10.30526/34.1.2558.
28. Abdulateef EA, Salman AN. On Shrinkage Estimation for R (s, k) in Case of Exponentiated Pareto Distribution. Ibn AL-Haitham J Pure Appl Sci. 2019;32(1):147–56. https://doi.org/10.30526/32.1.1825.
29. Kalaf BA, Jabar NAA, Madaki UY. Truncated Inverse Generalized Rayleigh Distribution and Some Properties. Ibn AL-Haitham J Pure Appl Sci. 2023;36(4):414–28. https://doi.org/10.30526/36.4.2977.
30. Al-Habib KH, Khaleel MA, Al-Mofleh H. Statistical Propoerties and Application for [0, 1] Truncated Nadarajah-Haghighi Exponential Distribution. Ibn AL-Haitham J Pure Appl Sci. 2024;37(2):376–92. https://doi.org/10.30526/36.4.2977.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms