Calculation of Semi-major and Semi-minor Radii and Deformation Parameters for Molybdenum 86-10042Mo  Isotopes

Authors

DOI:

https://doi.org/10.30526/38.4.4165

Keywords:

Electric quadrupole moments, Possibility of electrical transition, Half-life mean-squared, Charge distribution, Radius ˂r2 ˃, Transition probability B (E2;0+→2+) ↑

Abstract

This study explores the nuclear properties of even-numbered molybdenum () isotopes in the mass range 86 to 100. It focuses on the calculations of fundamental nuclear properties such as distortion coefficients ( and ), electric quadrupole moments (Q₀), root-mean-square charge radii, and reduced transition probabilities B(E2)↑. These calculations were derived using a theoretical framework based on the distorted shell model and implemented in MATLAB. The evaluation also included the identification of the two quasi-nuclear shape axes (major and minor), from which three-dimensional representations of the isotopic shapes were generated.The analysis revealed a gradual decrease in distortion coefficients and transition probabilities with increasing mass number, indicating a trend toward nuclear stability. We observed a significant decrease in distortion near the magic number of neutrons, demonstrating the enhanced stability resulting from closed shells. The results are in good agreement with theoretical predictions and experimental data, providing a deeper understanding of the behavior of molybdenum isotopes and contributing to the expansion of knowledge of nuclear shape evolution, charge distribution, and nuclear transitions in intermediate-mass nuclei.

Author Biographies

  • Reem gani abdulrazzaq mohammed, Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq 

  • Sameera Ahmed Ebrahiem , Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq .

    Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq 

  • Mustafa H. Shareef, Department of Physics, Faculty of Science, Karabuk University, Karabuk, 78050, Türkiye.

    Department of Physics, Faculty of Science, Karabuk University, Karabuk, 78050, Türkiye.

References

1. Boboshin I, Ishkhanov B, Komarov S, Orlin V, Peskov N, Varlamov V. Investigation of Quadrupole Deformation of Nucleus and its Surface Dynamic Vibrations. Int Conf Nucl Data Sci Technol. 2007;23:65-68.

2. Ali AH, Taha Idrees M. Study of deformation parameters (β2, δ) for 18, 20, 22, 24, 26, 28Ne isotopes in sdpf shell. Karbala Int J Mod Sci. 2020;6(1):78-82. https://doi.org/10.33640/2405-609X.1376.

3. Salim DA, Ebrahiem SA. Study of nuclear properties for the carbon (C) and oxygen (O) isotopes: Deformation parameters and root mean square radii. In: AIP Conf Proc. AIP Publishing; 2022. https://doi.org/10.1063/5.0093768.

4. Hassan IM, Ebrahiem SA, Al-Khafaji RSA. Calculated the quadrupole electrical transition |M(E2)|² Wu ↓ for even-even nuclides of strontium (78-100Sr and 66-76Ge). In: AIP Conf Proc. AIP Publishing; 2022. https://doi.org/10.1063/5.0094215.

5. Kumar R, Bhuyan M, Jain D, Carlson BV. Theoretical Description of Low-Energy Nuclear Fusion. In: Nuclear Structure Phys. CRC Press; 2020. p. 121–144.

6. Majeed FA, Obaid SM. Nuclear structure study of 22, 24Ne and 24Mg nuclei. Rev Mex Fis. 2019;65(2):159-167. https://doi.org/10.31349/revmexfis.65.159.

7. Hosseinnezhad A, Sabri H, Seidi M. The correlation of quadrupole transition rates of deformed nuclei by non-parametric approach. Nucl Phys A. 2022;1022:122431. https://doi.org/10.1016/j.nuclphysa.2022.122431.

8. Ali AH, Hassoon SO, Tafash HT. Calculations of Quadrupole Deformation Parameters for Nuclei in fp shell. In: J Phys Conf Ser. IOP Publishing; 2019. p. 012010. https://doi.org/10.1088/1742-6596/1178/1/012010.

9. Al-Sayed A, Abul-Magd AY. Level statistics of deformed even-even nuclei. Phys Rev. 2006;74(3):037301.

10. Yoshida K. Suddenly shortened half-lives beyond Ni-78: N = 50 magic number and high-energy nonunique first-forbidden transitions. Phys Rev C. 2019;100(2):024316. https://doi.org/10.1103/PhysRevC.100.024316.

11. Raheem EM, Hasan AAA, Alwan IH. Study of ground state properties of some Ni-isotopes using Skyrme-Hartree-Fock method. Iraqi J Phys. 2019;17(42):1-12. https://doi.org/10.20723/ijp.17.42.1-12.

12. Yoshida K. Suddenly shortened half-lives beyond Ni-78: N = 50 magic number and high-energy nonunique first-forbidden transitions. Phys Rev C. 2019;100(2):024316. https://doi.org/10.1103/PhysRevC.100.024316.

13. Heyde KLG. The nuclear shell model. Springer; 1994.

14. Ebrahiem SA, Zghaier HA. Estimation of geometrical shapes of mass-formed nuclei (A = 102-178) from the calculation of deformation parameters for two elements (Sn & Yb). In: J Phys Conf Ser. IOP Publishing; 2018. p. 012095. https://doi.org/10.1088/1742-6596/1003/1/012095.

15. Zghaier HA, Ebrahiem SA, Abdul-Jabbar H. Study the shapes of nuclei for heavy elements with mass number equal to (226 ≤ A ≤ 252) through determination of deformation parameters for two elements (U & Cf). Ibn Al-Haitham J Pure Appl Sci. 2018;31(3):10-19. https://doi.org/10.30526/31.3.2022.

16. Hameed BS, Rejah BK. Study the nuclear structure of some cobalt isotopes. Baghdad Sci J. 2022;19(6 Suppl):1566. https://doi.org/10.21123/bsj.2022.7537.

17. Ma C, Zong YY, Zhao YM, Arima A. Evaluation of nuclear charge radii based on nuclear radii changes. Phys Rev C. 2021;104(1):014303. https://doi.org/10.1103/PhysRevC.104.014303.

18. Adamu A. A new measurement of nuclear radius from the study of β⁺–decay energy of finite-sized nuclei. J Rad Nucl Appl. 2021;6(1):45. https://doi.org/10.18576/jrna/060107.

19. Mahmood PF. Ground state properties of even-even 30–92Ca isotopes using HFB theory. Kirkuk J Sci. 2024;19(1):43–50. https://doi.org/10.32894/kujss.2024.146573.1136.

20. Pritychenko B, Birch M, Singh B. Revisiting Grodzins systematics of B(E2) values. Nucl Phys A. 2017;962:73–102. https://doi.org/10.1016/j.nuclphysa.2017.03.011.

21. Akkoyun ST, Bayram A, Kara SO. A study on estimation of electric quadrupole transition probability in nuclei. J Nucl Sci. 2015;2(1):7–10.

22. Bonatsos D. Interacting boson models of nuclear structure. In: Hodgson PE, editor. Oxford Univ Press; New York: 1988. p. 1–264.

23. Angeli I, Marinova KP. Table of experimental nuclear ground state charge radii: An update. At Data Nucl Data Tables. 2013;99(1):69–95. https://doi.org/10.1016/j.adt.2011.12.006.

24. Taha H, Jiang ZT, Henry DJ, Amri A, Yin CY, Alias AB, et al. Improved mechanical properties of sol-gel derived ITO thin films via Ag doping. Mater Today Commun. 2018;14:210–24. https://doi.org/10.1016/j.apsusc.2020.147164.

25. Pritychenko B, Birch M, Singh B, Horoi M. Tables of E2 transition probabilities from the first 2⁺ states in even-even nuclei. At Data Nucl Data Tables. 2016;107:1–139. https://doi.org/10.1016/j.adt.2015.10.001.

26. Pritychenko B, Birch M, Horoi M, Singh B. B(E2) evaluation for 0⁺ → 2⁺ transitions in even-even nuclei. arXiv. 2013 Feb 27. Available from: http://arxiv.org/abs/1302.6881. https://doi.org/10.1016/j.nds.2014.07.021.

27. Krane KS. Introductory nuclear physics. John Wiley & Sons; 1991. p. 231.

28. Bao S, Li K, Ning P, Peng J, Jin X, Tang L. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms. Appl Surf Sci. 2017;393:457–66. https://doi.org/10.1016/j.apsusc.2016.09.098.

29. Raman S, Nestor CW, Tikkanen P. Transition probability from the ground to the first-excited 2⁺ state of even-even nuclides. At Data Nucl Data Tables. 2001;78(1):1–128. https://doi.org/10.1006/adnd.2001.0858.

30. Angeli I, Marinova KP. Table of experimental nuclear ground state charge radii: An update. At Data Nucl Data Tables. 2013;99(1):69–95. https://doi.org/10.1016/j.adt.2011.12.006.

Downloads

Published

20-Oct-2025

Issue

Section

Physics

How to Cite

[1]
Mohammed, R. gani abdulrazzaq . et al. 2025. Calculation of Semi-major and Semi-minor Radii and Deformation Parameters for Molybdenum 86-10042Mo  Isotopes. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 209–217. DOI:https://doi.org/10.30526/38.4.4165.