Structural and Microstructural Characterization of Cu-Doped NiFe2O4 Nanoparticles Using Williamson-Hall Method

Authors

DOI:

https://doi.org/10.30526/38.4.4175

Keywords:

CuxNi1-xFe2O4, ferrite nanoparticles, X-ray diffraction, Williamson-Hall

Abstract

In this study report, Cu-doped ferrite nanoparticles (CuxNi1-xFe2O4), which are normally the size of less than 100 nanometers were achieved using the sol-gel method. This method consists of using citric acid as fuel, which leads to auto combustion. In this report, the samples mentioned above will be analyzed using the following techniques (XRD, FESEM, EDX), where X-ray diffraction indicated that the specimens consist of spinel phase with face-centered cubic (FCC) structure. The results showed the lattice constant of the material increased from (8.320) Å to (8.323) Å, which indicated fact that the ionic radius of copper (72) Å has a bigger size than the ionic radius of nickel (69) Å which led to an increase in the lattice constant, the crystal size was measured using Scherrer method with the three Williamson Hall models. First, the Williamson Hall Uniform Deformation Model (UDM), second Williamson Hall Uniform Stress Model (USDM), and third Williamson Hall Uniform Deformation Energy Density Model (UDEDM). All these models adapted to define the characteristics related to stress (σ), internal tendance (ε), and deformation energy density (U). The calculated size was compared by the two methods where the crystal size ranged from (19 - 55) nm, and the phenomenon of crystal expansion due to positive stress was observed through the positive slop that appeared in the Williamson Hall models The sample taken was examined further with it morphology character using the method known field emission scanning electron microscopy This has confirmed that the particle shape to be of spherical or sub-spherical, and the size of particle to be within the nano range. The energy-dispersive X-ray spectroscopy indicated that no other new elements resulted from this compound

Author Biographies

  • Sura K. Makki, College of Education for Pure Science/Ibn Al- Haitham, University of Baghdad, Baghdad, Iraq

    Physics

  • Tagreed M. Al-Saadi, College of Education for Pure Science/Ibn Al- Haitham, University of Baghdad, Baghdad, Iraq

    Physics

References

1. Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: are we there yet? Int J Mol Sci. 2020;22(1):385. https://doi.org/10.3390/ijms22010385.

2. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul Kadir A. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Mater. 2019;12(19):3052. https://doi.org/10.3390/ma12193052.

3. Liu P, Ma S, Zhang J, Huang Y, Liu Y, Wang Z. Formation of ultra-stable Au nanoparticles in Au–ZrO2 nanocomposites. J Mater Sci Technol. 2025;217:104-115. https://doi.org/10.1016/j.jmst.2024.08.007.

4. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8.

5. Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E. Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng. 2021;2021(1):5102014. https://doi.org/10.1155/2021/5102014.

6. Maikudi S, Alhadhrami A, Alshdoukhi IF, Ibrahim MM, Abouzied AS, Zaki ZI, Fallatah AM, Mohammed J. Cs3+-Ni2+ substituted spinel ferrites nanoparticles: insights into the crystal structure and magneto-optical properties. J Mol Struct. 2025;1332:141665. https://doi.org/10.1016/j.molstruc.2025.141665.

7. Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E. Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels. 2021;7(4):275. https://doi.org/10.3390/gels7040275.

8. Narang SB, Pubby K. Nickel spinel ferrites: a review. J Magn Magn Mater. 2021;519:167163. https://doi.org/10.1016/j.jmmm.2020.167163.

9. Reddy BC, Manjunatha HC, Vidya YS, Sridhar KN, Pasha UM, Seenappa L, Mahendrakumar C, Sadashivamurthy B, Dhananjaya N, Sankarshan BM, Krishnaveni S. Synthesis and characterization of multifunctional nickel ferrite nanoparticles for X-ray/gamma radiation shielding, display and antimicrobial applications. J Phys Chem Solids. 2021;159:110260. https://doi.org/10.1016/j.jpcs.2021.110260.

10. Jadhav SA, Khedkar MV, Somvanshi SB, Jadhav KM. Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications. Ceram Int. 2021;47(20):28623-28633. https://doi.org/10.1016/j.ceramint.2021.07.021.

11. Aggarwal D, Kaur M, Bansal S, Singhal S. Fabrication of eco-friendly NiFe2O4 nanocatalysts via plant extract-mediated synthesis: kinetic and mechanistic insights into photocatalytic degradation of an anthraquinone dye and tetracycline antibiotic. J Mol Struct. 2025;1319:139365. https://doi.org/10.1016/j.molstruc.2024.139365.

12. Paswan SK, Kumari S, Kar M, Singh A, Pathak H, Borah JP, Kumar L. Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J Phys Chem Solids. 2021;151:109928. https://doi.org/10.1016/j.jpcs.2020.109928.

13. Arrasheed EA, Meaz TM, Shalaby RM, Salem BI, Hemeda OM, Henaish AM. Rietveld refinement, cation distribution, morphological and magnetic study of NiAlxFe2-xO4 nanoparticles. Appl Phys A. 2021;127:1-10. https://doi.org/10.1007/s00339-021-04360-9.

14. Dey B, Bououdina M, Dhamodharan P, AsathBahadur S, Venkateshwarlu M, Manoharan C. Tuning the gas sensing properties of spinel ferrite NiFe2O4 nanoparticles by Cu doping. J Alloys Compd. 2024;970:172711. https://doi.org/10.1016/j.jallcom.2023.172711.

15. Irfan H, Racik KM, Anand S. X-ray peak profile analysis of CoAl2O4 nanoparticles by Williamson-Hall and size-strain plot methods. Mod Electron Mater. 2018;4(1):31-40. https://doi.org/10.3897/j.moem.4.1.33272.

16. Desai KR, Alone ST, Wadgane SR, Shirsath SE, Batoo KM, Imran A, Raslan EH, Hadi M, Ijaz MF, Kadam RH. X-ray diffraction based Williamson–Hall analysis and Rietveld refinement for strain mechanism in Mg–Mn co-substituted CdFe2O4 nanoparticles. Phys B Condens Matter. 2021;614:413054. https://doi.org/10.1016/j.physb.2021.413054.

17. Desai KR, Alone ST, Wadgane SR, Shirsath SE, Batoo KM, Imran A, Raslan EH, Hadi M, Ijaz MF, Kadam RH. X-ray diffraction based Williamson–Hall analysis and Rietveld refinement for strain mechanism in Mg–Mn co-substituted CdFe2O4 nanoparticles. Phys B Condens Matter. 2021;614:413054. https://doi.org/10.1016/j.physb.2021.413054.

18. Maniammal K, Madhu G, Biju V. X-ray diffraction line profile analysis of nanostructured nickel oxide: shape factor and convolution of crystallite size and microstrain contributions. Phys E Low Dimens Syst Nanostruct. 2017;85:214-222. http://dx.doi.org/10.1016/j.physe.2016.08.035.

19. Anjana V, John S, Prakash P, Nair AM, Nair AR, Sambhudevan S, Shankar B. Magnetic properties of copper doped nickel ferrite nanoparticles synthesized by co-precipitation method. IOP Conf Ser Mater Sci Eng. 2018;310(1):012024. https://doi.org/10.1088/1757-899X/310/1/012024.

20. Al-Saadi TM, Abed AH, Salih AA. Synthesis and characterization of AlyCu0.15Zn0.85-yFe2O4 ferrite prepared by the sol-gel method. Int J Electrochem Sci. 2018;13(9):8295-8302. https://doi.org/10.20964/2018.09.04.

21. Namikuchi EA, Gaspar RD, da Silva DS, Raimundo IM, Mazali IO. PEG size effect and its interaction with Fe3O4 nanoparticles synthesized by solvothermal method: morphology and effect of pH on the stability. Nano Express. 2021 Jun 4;2(2):020022. DOI: 10.1088/2632-959X/ac0596

22. Mustafa HJ, Al-Saadi TM. Effects of gum arabic-coated magnetite nanoparticles on the removal of Pb ions from aqueous solutions. Iraqi J Sci. 2021;62(3):889-896. https://doi.org/10.24996/ijs.2021.62.3.20.

23. Pender JP, Jha G, Youn DH, Ziegler JM, Andoni I, Choi EJ, Heller A, Dunn BS, Weiss PS, Penner RM, Mullins CB. Electrode degradation in lithium-ion batteries. ACS Nano. 2020;14(2):1243-1295. https://doi.org/10.1021/acsnano.9b04365.

24. Shashidhargouda HR, Mathad SN. Synthesis and structural analysis of Ni0.45Cu0.55Mn2O4 by Williamson–Hall and size–strain plot methods. Ovidius Univ Ann Chem. 2018;29(2):122-125. https://doi.org/10.2478/auoc-2018-0018.

25. Norouzzadeh P, Mabhouti K, Golzan MM, Naderali R. Consequence of Mn and Ni doping on structural, optical and magnetic characteristics of ZnO nanopowders: the Williamson–Hall method, the Kramers–Kronig approach and magnetic interactions. Applied Physics A. 2020 Mar;126(3):154. DOI: 10.1007/s00339-020-3335-9

26. Atre PP, Desai MA, Vyas AN, Sartale SD, Pawar BN. Deposition of β-In2S3 photosensitive thin films by ultrasonic spray pyrolysis. ES Energy Environ. 2020;12:52-59. https://doi.org/10.30919/esee8c1041.

27. Siegfried MJ, Choi KS. Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J Am Chem Soc. 2006;128(32):10356-10357. https://doi.org/10.1021/ja063574y.

28. Aly KA, Khalil NM, Algamal Y, Saleem QM. Lattice strain estimation for CoAl2O4 nanoparticles using Williamson–Hall analysis. J Alloys Compd. 2016;676:606-612. https://doi.org/10.1016/j.jallcom.2016.03.213.

29. Sivakami R, Dhanuskodi S, Karvembu R. Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:43-50. http://dx.doi.org/10.1016/j.saa.2015.07.008.

30. Mahdi HI, Bakr NA, Al-Saadi TM. Studying the gas sensitivity and magnetic properties of magnesium ferrite prepared by the sol-gel route. Iraqi J Sci. 2024;65(8):4313-4324. https://doi.org/10.24996/ijs.2024.65.8.16.

31. Kawsar M, Hossain MS, Bahadur NM, Ahmed S. Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model. Heliyon. 2024 Feb 15;10(3). https://doi.org/10.1016/j.heliyon.2024.e25347

32. Monshi A, Foroughi MR, Monshi MR. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World journal of nano science and engineering. 2012 Sep 28;2(3):154-60. DOI: 10.4236/wjnse.2012.23020

33. Mahdi HI, Al-Saadi TM, Bakr NA. Fabrication and characterization of CoxMn0.25-xMg0.75Fe2O4 nanoparticles for H2S sensing applications. J Mater Sci Mater Electron. 2023;34(22):1634. https://doi.org/10.1007/s10854-023-11064-8.

34. Al-Saadi TM, Kamil ZA. Study the effect of manganese ion doping on the size-strain of SnO2 nanoparticles using X-ray diffraction data. Ibn Al-Haitham J Pure Appl Sci. 2023;36(3):158-166. https://doi.org/10.30526/36.3.3052.

35. Sundaram PS, Sangeetha T, Rajakarthihan S, Vijayalaksmi R, Elangovan A, Arivazhagan G. XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Phys B Condens Matter. 2020;595:412342. https://doi.org/10.1016/j.physb.2020.412342.

36. Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater Chem Phys. 2020;239:122021. https://doi.org/10.1016/j.matchemphys.2019.122021.

37. Himabindu B, Devi NL, Kanth BR. Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; a review. Mater Today Proc. 2021;47:4891-4896. https://doi.org/10.1016/j.matpr.2021.06.256.

38. Dey PC, Das R. Impact of silver doping on the crystalline size and intrinsic strain of MPA-capped CdTe nanocrystals: a study by Williamson–Hall method and size–strain plot method. J Mater Eng Perform. 2021;30:652-660. https://doi.org/10.1007/s11665-020-05358-9.

39. Haija MA, Abu-Hani AF, Hamdan N, Stephen S, Ayesh AI. Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J Alloys Compd. 2017;690:461-468. https://doi.org/10.1016/j.jallcom.2016.08.174.

40. Sagadevan S, Chowdhury ZZ, Rafique RF. Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method. Mater Res. 2018;21:e20160533. https://doi.org/10.1590/1980-5373-MR-2016-0533.

Downloads

Published

20-Oct-2025

Issue

Section

Physics

How to Cite

[1]
Makki, S.K. and Al-Saadi, T.M. 2025. Structural and Microstructural Characterization of Cu-Doped NiFe2O4 Nanoparticles Using Williamson-Hall Method. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 218–229. DOI:https://doi.org/10.30526/38.4.4175.