Molecular detection of techoplanin associated genes in Staphylococcus aureus
DOI:
https://doi.org/10.30526/39.1.4207Keywords:
Clinical isolates, Molecular detection, PCR, Staphylococcus aureus, Virulence genesAbstract
Staphylococcus aureus is one of the causes of serious diseases that cause a wide range of infections, including urinary, skin, and respiratory infections. Thus, it has shown strains resistant to antibiotics, so that studying the molecular basis of virulence in staphylococcal bacteria becomes more important. The aim of this study is to investigate the presence of teicoplanin-associated genes (A, B, R) in S. aureus bacteria taken from clinical samples by PCR technique. 25 clinical samples from patients with respiratory diseases, skin ulcers, and urinary tract infections were collected from Yarmouk Teaching Hospital for a period ranging from October 2024 to January 2025. The presence of S. aureus in these samples has been identified by using standard biochemical methods and confirmed by the Vitek system. The resistance results showed that the highest percentage of resistance to the antibiotic was in benzylpenicillin (100%) and oxacillin (100%), and the lowest percentage of resistance was in the antibiotic (moxifloxacin 0%, linezolid 0%, tigecycline 0%, inducible clindamycin 0%, and trimethoprim 0%). purified the genomic DNA that was done by amplifying the polymerase chain reaction by specific prefixes of the target teicoplanin-associated genes (tca). The results indicated that all 25 isolates proved the presence of all tcaA, tcaB, and tcaR genes, and this was confirmed by gel electrophoresis. The relationship between the presence of genes with antibiotic resistance was detected; the result was shown especially for glycopeptides (vancomycin and teicoplanin).
References
1. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler VG Jr. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203–218. https://doi.org/10.1038/s41579-018-0147-4
2. Taylor TA, Unakal CG. Staphylococcus aureus Infection. 2025. PMID: 28722898
3. Touaitia R, Mairi A, Ibrahim NA, Basher NS, Idres T, Touati A. Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics. 2025 May 6;14(5):470. https://doi.org/10.3390/antibiotics14050470
4. Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens. 2024 Mar 24;13(4):276. DOI: https://doi.org/10.3390/pathogens13040276
5. Alkuraythi D. Virulence Factors and Pathogenicity of Staphylococcus aureus. In 2024. https://doi.org/10.5772/intechopen.1006633
6. Girma A. Staphylococcus aureus: Current perspectives on molecular pathogenesis and virulence. The Cell Surface. 2025 Jun; 13:100137. https://doi.org/10.1016/j.tcsw.2024.100137
7. Kavanagh N, Ryan EJ, Widaa A, Sexton G, Fennell J, O’Rourke S. Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev. 2018;31(2):e00084-17. https://doi.org/10.1128/CMR.00084-17
8. de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr. 2019 Apr 12;7(2). https://doi.org/10.1128/microbiolspec.GPP3-0061-2019
9. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016 Sep 11;14(9):563–75. https://doi.org/10.1038/nrmicro.2016.94
10. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
11. Poudel AN, Zhu S, Cooper N, Little P, Tarrant C, Hickman M, Yao G. The economic burden of antibiotic resistance: a systematic review and meta-analysis. PLoS One. 2023;18(5):e0285170. https://doi.org/10.1371/journal.pone.0285170
12. Hobbs AM, Kluthe KE, Carlson KA, Nuxoll AS. Interruption of the tricarboxylic acid cycle in Staphylococcus aureus leads to increased tolerance to innate immunity. AIMS Microbiol. 2021;7(4):513–27. https://doi.org/10.3934/microbiol.2021031
13. Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol. 2023 Jun 22;14. https://doi.org/10.3389/fmicb.2023.1204428
14. Pai L, Patil S, Liu S, Wen F. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol. 2023 Dec 19;13. https://doi.org/10.3389/fcimb.2023.1327069
15. Chiba M, Aoyagi T, Yoshida M, Katsumi M, Fujimaki S-I, Ishii Y, Tateda K, Kaku M. Evaluation of the performance of GeneSoC®, a novel rapid real-time PCR system, to detect Staphylococcus aureus and methicillin resistance in blood cultures. J Infect Chemother. 2023;29(7):718–721. https://doi.org/10.1016/j.jiac.2023.03.006
16. Nadiya S, Kolla HB, Reddy PN. Optimization and evaluation of a multiplex PCR assay for detection of Staphylococcus aureus and its major virulence genes for assessing food safety. Brazilian Journal of Microbiology. 2023 Mar 23;54(1):311–21. https://doi.org/10.1007/s42770-023-00906-6
17. Abdrabaa MK, Abd Aburesha R. Gene Expression Evaluation of Intracellular Adhesins and Regulatory Genes among Biofilm Producing MRSA Isolates. Iraqi Journal of Science. 2023 Jan 30;75–83. https://doi.org/10.24996/ijs.2023.64.1.8
18. Bakthavatchalam YD, Babu P, Munusamy E, Dwarakanathan HT, Rupali P, Zervos M, Victor PJ, Veeraraghavan B. Genomic insights on heterogeneous resistance to vancomycin and teicoplanin in methicillin-resistant Staphylococcus aureus: a first report from South India. PLoS One. 2019;14(12):e0227009. https://doi.org/10.1371/journal.pone.0227009
19. Salgueiro V, Manageiro V, Bandarra NM, Ferreira E, Clemente L, Caniça M. Genetic Relatedness and Diversity of Staphylococcus aureus from Different Reservoirs: Humans and Animals of Livestock, Poultry, Zoo, and Aquaculture. Microorganisms. 2020 Sep 3;8(9):1345. https://doi.org/10.3390/microorganisms8091345
20. Habib G, Gul H, Ahmad P, Hayat A, Rehman MU, Mohamed Moussa I, Elansary HO. Teicoplanin-associated gene tcaA inactivation increases persister cell formation in Staphylococcus aureus. Front Microbiol. 2023 Oct 13;14:1241995. https://doi.org/10.3389/fmicb.2023.1241995
21. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 33rd edition. Wayne, PA: Clinical and Laboratory Standards Institute; 2023.
22. Brandenberger M, Tschierske M, Giachino P, Wada A, Berger-Bächi B. Inactivation of a novel three-cistronic operon tcaR-tcaA-tcaB increases teicoplanin resistance in Staphylococcus aureus. Biochimica et Biophysica Acta (BBA) - General Subjects. 2000 Oct;1523(2–3):135–9. https://doi.org/10.1016/S0304-4165(00)00133-1
23. Study the Expression of msrA,msrB and linA/linA’ genes in Presence of Some Antibiotics in Methicillin Resistance Staphylococcus aureus. Iraqi Journal of Science [Internet]. 2018 Oct 31;59(4A):1811–25. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/528
24. Otto M, Süssmuth R, Jung G. Role of tcaA and tcaB in biofilm formation. Infect Immun. 2006;74(4):2145–53. https://doi.org/10.1128/IAI.74.4.2145-2153.2006
25. Mussa AA, Al-Mathkhury HJF. Estimation of the expression of glucose-dependent biofilm-encoding icaA and icaD genes in methicillin-resistant Staphylococcus aureus isolates. Iraqi J Biotechnol. 2025; 24(1): 270–282.
26. Miao J, Lin S, Soteyome T, Peters BM, Li Y, Chen H, Su J, Li L, Li B, Xu Z, Shirtliff ME, Harro JM. Biofilm formation of Staphylococcus aureus under food heat processing conditions: First report on CML production within biofilm. Sci Rep. 2019 Feb 4;9(1):1312. https://doi.org/10.1038/s41598-018-35558-2.
27. El Seedy FR, Samy AA, Salam HSH, Khairy EA, Koraney AA. Polymerase chain reaction detection of genes responsible for multiple antibiotic resistance Staphylococcus aureus isolated from food of animal origin in Egypt. Vet World. 2017;10(10):1205–11. https://doi.org/10.14202/vetworld.2017.1205-1211
28. Novick RP, Geisinger E. Quorum Sensing in Staphylococci. Annu Rev Genet. 2008;42(1):541–64. https://doi.org/10.1146/annurev.genet.42.110807.091640
29. Shakur JA, Aburesha RA. Investigating the presence of eap and spa genes of Staphylococcus aureus and their relation to antibiotic resistance. Ibn Al-Haitham J Pure Appl Sci. 2024;37(3). https://doi.org/https://doi.org/10.30526/37.3.3436
30. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. The Lancet. 2006;368(9538):874–85. https://doi.org/10.1016/S0140-6736(06)68853-3
31. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017 May 1;41(3):430–49. https://doi.org/10.1093/femsre/fux007
32. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





