CrIII, MnII and CoII Complexes with Schiff Base Ligand; Synthesis, Characterization, Physicochemical and Thermal Properties
DOI:
https://doi.org/10.30526/39.1.4210Keywords:
1-Amino-4-nitrobenzene, ((E)-3-((4-Acetylphenyl)diazenyl)-2-hydroxy-1-naphthaldehyde), Metal complexes, Proteus mirailis, Schiff base ligandAbstract
Synthesis and characterization of a Schiff base ligand (HL), derived from ((E)-3-((4-acetylphenyl)diazenyl)-2-hydroxy-1-naphthaldehyde) with 1-amino-4-nitrobenzene in a one-to-one molar ratio. This study aims to synthesize and characterize HL. Subsequently, the interaction of ligand with different metal ions involving chromium (III), manganese (II) and cobalt (II) in the ratio of one ligand to one metal, resulted in the isolation of tetra and hexa-coordinate monomeric compound have been fully characterized using analytical methods and spectroscopic methods involve elemental microanalysis, 1H and 13C (NMR), (FT-IR) spectroscopy, as well as electronic spectra and magnetic moment magnetic susceptibility along with mass spectroscopy, in addition, thermal analysis and conductivity measurements. The FTIR analysis showed the presence of functional groups, including carbonyl, imine, and azo, as well as vibrations (M-OH2), (M-O), (M-N), and (M-Cl). Mass spectrometry identified a deprotonated molecular ion ([M-H]+) for the ligand at m/z= 437.55 amu (1%). The electron spectra and magnetic moments: 3.80, 5.91, 4.66 BM for chromium, manganese, and cobalt complexes, respectively. It has been proposed that the chromium and manganese complexes adopt distorted octahedral geometries, whereas the cobalt complex adopts a tetrahedral geometry.
References
1. Sen T, Sarkar P, Sutradhar S, Das D, Ghosh BN. A review on platinum (II/IV) complexes of Schiff base ligands and application in biological activity. Inorg Chem Commun. 2024; 170(Part 3):113438. https://doi.org/10.1016/j.inoche.2024.113438.
2. Misganaw K, Thillairasu P, Shumi G, Debebe H, Berhanu S. Vanillin and 4-nitroanilline derived Schiff-base and its nickel (II) complex: spectral analysis and antibacterial investigation. Bull Chem Soc Ethiop. 2024; 38(5):1275-1289. https://doi.org/10.4314/bcse.v38i5.7.
3. Zhao P, Zhang X, Dong J, Li L, Meng X, Gao L. In vitro study of the pro-apoptotic mechanism of amino acid Schiff base copper complexes on anaplastic thyroid cancer. Eur J Pharm Sci. 2025; 206: 107005. https://doi.org/10.1016/j.ejps.2025.107005.
4. Yadav M, Yadav D, Singh DP, Kapoor JK. Macrocyclic Schiff base complexes of Zn (II), Cu (II), Co (II), and Ni (II) targeting topoisomerase IIβ: Synthesis, docking, and evaluation as potential anticancer agents. Appl Organomet Chem. 2025; 39(3):e7885. https://doi.org/10.1002/aoc.7885.
5. Kahraman S, Hepokur C, Erci F, Erkan S, Cetin S, Kose M, Kurtoglu M. Copper (II) complexes with N, O-donor azo-Schiff base ligands: Synthesis, structure, DFT studies, molecular docking, anticancer and antimicrobial activity. Polyhedron. 2025; 269:117393. https://doi.org/10.1016/j.poly.2025.117393.
6. Abd El-Lateef HM, Khalaf MM, Gouda M, Alharbi OA, Abdelhamid AA, Amer AA, Ismail AF, Abdou A. Fabrication, structural, DFT, biological and molecular docking studies of Fe (III), Ni (II), and Cu (II) complexes based on Schiff-base derived from benzene-1, 4-diamine and 2-hydroxy-1-naphthaldehyde. J Indian Chem Soc. 2024; 101(2):101385. https://doi.org/10.1016/j.jics.2024.101385.
7. Ameen D, Hayyas S. Synthesis, characterization and antimicrobial evaluation of schiff base derived from sulfonamides and vanillin. Zanco J Med Sci. 2024; 28(1):9-18. https://doi.org/10.15218/zjms.2024.002
8. Kumar M, Singh AK, Gupta J, Singh S, Yadav RK, Singh AP. Exploring mixed-ligand cobalt (II) complexes with salicylaldehyde-based N, O-donor bidentate Schiff bases and neutral N-donor ligands: Synthesis, characterization, DFT, and antimicrobial studies. J Indian Chem Soc. 2025; 102(8):101803. https://doi.org/10.1016/j.jics.2025.101803.
9. Çakmak R, Başaran E, Şentürk M. Synthesis, characterization, and biological evaluation of some novel Schiff bases as potential metabolic enzyme inhibitors. Arch Pharm (Weinheim). 2022; 355(4):e2100430. https://doi.org/10.1002/ardp.202100430.
10. Ferretti V, Matos CP, Canelas C, Pessoa JC, Tomaz AI, Starosta R, Correia I, Leon IE. New ternary Fe (III)-8-hydroxyquinoline–reduced Schiff base complexes as selective anticancer drug candidates. J Inorg Biochem. 2022; 236:111961.https://doi.org/10.1016/j.jinorgbio.2022.111961.
11. Matos CP, Yildizhan Y, Adiguzel Z, Pavan FR, Campos DL, Pessoa JC, Ferreira LP, Tomaz AI, Correia I, Acilan C. New ternary iron (III) aminobisphenolate hydroxyquinoline complexes as potential therapeutic agents. Dalton Trans. 2019; 48(24):8702-8716. https://doi.org/10.1039/c9dt01193E.
12. Boublia A, Lebouachera SE, Haddaoui N, Guezzout Z, Ghriga MA, Hasanzadeh M, Benguerba Y, Drouiche N. State-of-the-art review on recent advances in polymer engineering: modeling and optimization through response surface methodology approach. Polym Bull. 2023; 80(6):5999-6031. https://doi.org/10.1007/s00289-022-04398-6.
13. Jarad AJ, Dahi MA, Al-Noor TH, El‑ajaily MM, AL-Ayash SR, Abdou A. Synthesis, spectral studies, DFT, biological evaluation, molecular docking and dyeing performance of 1-(4-((2-amino-5-methoxy) diazenyl) phenyl) ethanone complexes with some metallic ions. J Mol Struct. 2023; 1287(11):135703. https://doi.org/10.1016/j.molstruc.2023.135703.
14. Sakhare KB, Sakhare MA, Sarwade KN, Bharate YN. Synthesis, characterization, and anticancer, antidiabetic, and antimicrobial activities of azo-Schiff base ligand with ONO donor atom and its transition metal complexes. Anti-Infective Agents. 2024; 23(4). https://doi.org/10.2174/0122113525343891240925093331
15. Kargar H, Fallah-Mehrjardi M, Moghadam M, Zare-Mehrjardi HR, Omidvar A, Dege N, Acar E, Ashfaq M, Munawar KS, Tahir MN, Shahsavari HR. Tricoordinate copper (I) complexes of N,N-bidentate Schiff-base ligand: Syntheses, crystal structure determinations, electrochemical properties, theoretical studies, and catalytic activities. Inorg Chem Commun. 2025; 182:115512. https://doi.org/10.1016/j.inoche.2025.115512.
16. Mohan RD, Sarukrishna S, Babu AS, Santhosh D, Fathima SA, Parvathy B. A review of ligand denticity in copper–Schiff base complexes: Structural tuning toward enhanced antioxidant activity. Inorg Chim Acta. 2025; 590:122980. https://doi.org/10.1016/j.ica.2025.122980.
17. Mohammed HS, Tripathi VD. Medicinal applications of coordination complexes. IOP: Conference Series. 2020; 1664(1):012070. https://doi.org/10.1088/1742-6596/1664/1/012070.
18. Malav R, Sharma RK, Ray S. Versatile applications of cobalt and copper complexes of biopolymeric Schiff base ligands derived from chitosan. Int J Biol Macromol. 2026; 301:140338. https://doi.org/10.1016/j.ijbiomac.2025.140338.
19. Catalano A, Sinicropi MS, Iacopetta D, Ceramella J, Mariconda A, Rosano C, Scali E, Saturnino C, Longo P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents. Appl Sci. 2021; 11(13):6027. https://doi.org/10.3390/app11136027.
20. Kumari P, Kumar A, Kataria R, Kaushik NK, Ahmed M, Ansari A, Ekta, Brahma M, Maruthi M, Babu YS, Singh B, Kumar V. Synthesis, characterization and biological studies of pyrazole-linked Schiff bases and their copper (ii) complexes as potential therapeutics. RSC Adv. 2025; 15(50):42299-42314. https://doi.org/10.1039/d5ra06008G.
21. Soroceanu A, Bargan A. Advanced and biomedical applications of Schiff-base ligands and their metal complexes: A review. Crystals. 2022; 12(10):1436. https://doi.org/10.3390/cryst12101436.
22. Abaas HJ, Al-Jeboori MJ. New dimeric complexes with semicarbazone mannish-based ligand; formation, structural investigation and biological activity. Revis Bionatura 2023; 8(2):15. https://doi.org/10.21931/RB/2023.08.02.15.
23. Behzad M, Ghasemi L, Capomolla SS. New Cu (II) complexes of unsymmetrical N2O and N2O2 type Schiff base ligands: Molecular docking and pharmacophore modeling studies against a DNA duplex, Zika virus and Dengue fever proteases. Inorganica Chimica Acta. 2025; 583(6):122666. https://doi.org/10.1016/j.ica.2025.122666.
24. Hasan RH, Hasan HA. Synergism antibacterial activity for novel synthesized Schiff base ligands and semi-thiosemicarbazones with ß-diketones and 4-aminoantipyrine. Revis Bionatura 2022; 7(3):43.
http://dx.doi.org/10.21931/RB/2022.07.03.43.
25. Mezher MQ, Yousif EI. New metal complexes with azo-Schiff base ligand synthesis, characterisation and biological activity. ICAIIT. 2025; 13(2):643-652. http://dx.doi.org/10.25673/120552.
26. Malav R, Ray S. Recent advances in the synthesis and versatile applications of transition metal complexes featuring Schiff base ligands. RSC Advances. 2025; 15(28):22889-22914. https://doi.org/10.1039/d5ra03626gG.
27. Ismail AA, Lateef SM. Synthesis a novel complexes of VO (II), Mn (II), Fe (II), Co (II), Ni (II), Cu (II) and Pt (IV) derived from Schiff’s base of pyridoxal and 2-amino-4-nitrophenol and study their biological activates. IHJPAS. 2023; 36(2):259-275. https://doi.org/10.30526/36.2.3054.
28. Pasieczna-Patkowska S, Cichy M, Flieger J. Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules. 2025; 30(3):684.
https://doi.org/10.3390/molecules30030684.
29. Amjid Z, Khan S, Iqbal T, Hussain R, Ali HZ, Shoaib K, Khan Y, Ullah H, Arshad S, Iqbal R, Ullah R. Synthesis, confirmations and biological evaluation of acid substituted Schiff base Derivatives: Unraveling insight through SAR, DFT, ADMET and molecular docking. Results Chem. 2024; 11(21): 101744. https://doi.org/10.1016/j.rechem.2024.101744.
30. Abbas K, Zahid A, Parveen B, Amin I, Hussain S, Ahmed F, Munawar KS. Comprehensive investigation of organotin (IV) complexes derived from a novel Schiff Base: Synthesis, characterization, antioxidant, ADME profiling, and in vitro biological evaluation. Appl Organomet Chem. 2025; 39(1): e7761. https://doi.org/10.1002/aoc.7761.
31. Aazam ES, Majrashi M, Hussien MA. Exploring novel NH-form resorcinol-based Schiff base and its metal complexes: Synthesis, characterization, cytotoxic activity, molecular docking and ADME studies. Heliyon. 2024; 10(18):e37385.https://doi.org/10.1016/j.heliyon.2024.e37385.
32. Basaleh AS, Howsaui HB, Sharfalddin AA, Hussien MA. Substitution effect on new Schiff base ligand in complexation with some divalent Metal ion; synthesis, characterization, DFT and cytotoxicity studies. Results Chem. 2022; 4:100445. https://doi.org/10.1016/j.rechem.2022. 100445.
33. Kargar H, Abyar F, Zare-Mehrjardi HR, Fallah-Mehrjardi M, Munawar KS, Ashfaq M, Tahir MN. Indium (III) complex with NOON-tetradentate Schiff base ligand: Synthesis, crystal structure determination, electrochemical properties, theoretical studies, and molecular docking. Results Chem. 2025; 18:102909. https://doi.org/10.1016/j.rechem.2025.102909.
34. Khaleel HI, Al-Rubaye BK. New metal complexes derived from heterocyclic Schiff-base ligand; preparation, structural investigation and biological activity. IJDDT. 2022; 12(3):1341-1346. https://doi.org/10.25258/ijddt.12.3.68.
35. Anu D, Naveen P, Shyamsivappan S, Saravanan C, Arumugam N, Almansour AI, Frampton CS. New palladium (II) metallates containing ON donor Schiff base ligand. synthesis, spectral characterization, x-ray crystallography, photo physical and in vitro cytotoxicity. J Mol Struct. 2024; 1316:139000. https://doi.org/10.1016/j.molstruc.2024.139000.
36. Sogukomerogullari HG, Başaran E, Kepekçi RA, Türkmenoğlu B, Sarıoğlu AO, Köse M. Novel europium (III), terbium (III), and gadolinium (III) Schiff base complexes: Synthesis, structural, photoluminescence, antimicrobial, antioxidant, and molecular docking studies. Polyhedron. 2025; 265(1): 117275. https://doi.org/10.1016/j.poly.2024.117275.
37. Chen Q, Zeng MH, Wei LQ, Kurmoo M. A multifaceted cage cluster,[CoII6O12⊃ X]−(X= Cl− or F−): halide template effect and frustrated magnetism. Chem Mater. 2010; 22(14):4328-4334.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





