Cladoceran Diversity within Samarra Impoundment, Iraq
DOI:
https://doi.org/10.30526/39.1.4214Keywords:
Ecological Indices, Dam and Reservoir, Samarra Impoundment, Similarity Index, Cladocera DiversityAbstract
This research is considered the first of its kind in this sector of the river for more than three decades and aims to evaluate the diversity, abundance, richness and spatiotemporal variations of Cladocera within Samarra Impoundment water. The samples of these crustaceans were collected from three sites in the impoundment every two months between February 2023 and December 2024. We identified 19 taxa belonging to five Cladocerian families. The most abundant genera were Alona sp., Bosmina sp., Chydorus sp., Ceriodaphnia sp., Diaphanosoma sp., Daphnia sp. and Moina sp. The minimum and maximum densities were observed in spring and winter, respectively. The average values for evenness, richness and diversity indices were 0. 9, 0.82 and 0.88; 2.10, 1.98 and 1.71; 1.62, 1.55, and 1.43 bits/ind. at sites 1, 2 and 3, respectively. Seasonally, the lowest and highest values of richness and evenness indices were observed in summer and spring, respectively. The diversity index was observed in the summer and winter seasons. Furthermore, the analysis of the Jaccard similarity index indicated the highest value between the species at sites 1 and 3, reaching 39.98%.
References
1. Cáceres CE, Rogers DC. Class Branchiopoda, In: Thorp, JH, Rogers, DC. Freshwater Invertebrates-Ecology and General Biology. fourth ed. Thorp and Covich's Academic Press, Elsevier Inc, London 2015: 687-708. https://doi.org/10.1016/C2010-0-65590-8.
2. Manickam N, Santhanam P, Saravana Bhavan P. Techniques in the Collection, Preservation and Morphological Identification of Freshwater Zooplankton. In: Santhanam P, Begum A, Pachiappan P. Basic and Applied Zooplankton Biology, first ed. Springer, Singapore 2019; 130-195. https://doi.org/10.1007/978-981-10-7953-5_5.
3. Błedzki J, Rybak I. Freshwater Crustacean Zooplankton of Europe, 1st ed., Springer, Switzerland, p918. 2016. https://doi.org/10.1007/978-3-319-29871-9.
4. Zawisza E, Zawiska I, Correa-Metrio A. Cladocera Community Composition as a Function of Physicochemical and Morphological Parameters of Dystrophic Lakes in NE Poland, Wetl. 2016; 36: 1131-1142https://doi.org/10.1007/s13157-016-0832-x.
5. Barnett AJ, Finlay K, Beisner BE. Functional diversity of crustacean zooplankton communities: Towards a trait-based classification. Freshw. Biol. 2007; 52(5): 796-813. https://doi.org/10.1111/j.1365-2427.2007.01733.x
6. Chakraborty S, Mallick PH. Cladocera as a substitute for Artemia as live feed in aquaculture practices: a review. Sustainability, Agri, Food and Environmental Research. 2023; 11(X):11. (ISSN: 0719-3726). https://doi.org/10.7770/safer-V11N1-art2423
7. Martins HL, Panarelli EA, Borges JS, Korasaki V, Millan RN. Shallow reservoirs in urban perimeter: evaluation of trophic status and relations with the zooplanktonic community. Acta Limnol. Bras. 2024; 36, e15. https://doi.org/10.1590/S2179-975X8322
8. Yuslan A, Suhaimi H, Azani N, Wong W, Rasdi NW. Exploring the Freshwater Cladocera (Pleuroxus spp.) as New Potential Live Feed in Aquaculture (Meneroka Cladocera Air Tawar (Pleuroxus spp.) sebagai Suapan Hidup Berpotensi Baharu dalam Akuakultur). Sains Malays. 2024; 53(10): 3241-3252. http://doi.org/10.17576/jsm-2024-5310-01
9. Akopian M, Garnier J, Pourriot RA. large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation. J. Plankton Res. 1999; 21(2): 285-297 https://doi.org/10.1093/plankt/21.2.285
10. Havel JE, Medley KA, Dickerson KD, Angradi TR, Bolgrien DW, Bukaveckas PA, Jicha, TM. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia. 2009; 628: 121–135. https://doi.org/10.1007/s10750-009-9750-8
11. Chang KH, Doi H, Imai H, Gunji F, Nakano SI. Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnol. 2008; 9: 125-133. https://doi.org/10.1007/s10201-008-0244-6
12. Rudyk-Leuska NYa, Khyzhniak MI, Leuskyi MV, Yevtushenko NYu, Kondratіuk VM, Kononenko RV, Tson NI. Peculiarities of zooplankton cenosis structure and development in the middle water area of Kremenchuk reservoir, Dnieper River (Ukraine), in conditions of elevated temperatures. Ukr. J. Ecol. 2021; 11 (6): 63-68. https://doi.org/10.15421/2021_224
13. Schleiss AJ, Boes RM Dams and reservoirs under changing challenges. CRC press. 2011. https://doi.org/10.1201/b11669.
14. Schmitt, RJP, Rosa L. Dams for hydropower and irrigation: Trends, challenges, and alternatives. Renew. Sustain. Energy Rev. 2024; 199: 114439. DOI: 10.1016/j.rser.2024.114439
15. Rai RK, Singh VP, Upadhyay A. Planning and evaluation of irrigation projects: methods and implementation. Chapter 4 - Hydrologic Computations, Academic press. 2017. 83-229 https://doi.org/10.1016/B978-0-12-811748-4.00004-2.
16. Akbar NA and Ali LA. A Study of Zooplankton Community in Alwand River and Dam Iraq, Zanco j. pure appl. sci. 2020; 32: 116-126. https://doi.org/10.21271/ZJPAS.32.3.13
17. Ajeel SG. A review of the Cladocera in Basrah, Iraq. Iraqi J. of Aquacult. 2022; 19(2): 179-190. https://doi.org/10.58629/ijaq.v19i2.421
18. Majeed OS, Nashaat MR, Al-Azawi AJ. Effect of Tharthar Canal water on composition and diversity of cladocera in Tigris river northern of Baghdad, Iraq. In AIP Conference Proceedings (Vol. 2834, No. 1). AIP Publishing. 2023. p. 020010-1- 17. https://doi.org/10.1063/5.0161533
19. Al-Bahathy IA, Al-Janabi ZZ, Taha R A, Adel MM. Biodiversity of Cladocera and Water Quality for Euphrates River in the Eastern of Al-Qadisiyah Governorate, Iraq. Egypt. J. Aquat. Biol. Fish. 2024; 28(1): 1-17. https://doi.org/10.21608/EJABF.2024.334488
20. Abdulateef TM, Hoobi R, Abbas, AS. OPERATION OF MOSUL–DOKAN RESERVOIRS AND SAMARRA BARRAGE USING HEC–RES. SIM MODEL DURING FLOOD PERIOD. J. eng. sustain. dev. 2022; 26(2), 23-29. https://doi.org/10.31272/jeasd.26.2.3
21. Sissakian VK. Genesis and Age Estimation of the Tharthar Depression, Central West Iraq, Iraqi Bulletin of Geology and Mining (IBGM). 2011; 7(3): 47-62. https://ibgmiq.org/ibgm/index.php/ibgm/issue/view/18.
22. Abdullah M, Al-Ansari N, Laue J. Water Resources Projects in Iraq: Barrages. J. Earth Sci. Geotech. Eng. 2019; 9(4): 153–167. https://www.scirp.org/reference/referencespapers?referenceid=2937547.
23. Sabeeh NN, Alabdraba, WMS. The Hydrodynamic Model using HEC-RAS: The case of Tigris River Downstream of Samarra Barrage (Iraq). In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2022; 1120(1): p. 012017. http://dx.doi.org/10.1088/1755-1315/1120/1/012017
24. Juday C. Limnological apparatus. Trans. Wis. Acad. Sci. Arts Lett. 1916; 18: 566-592.
25. Welch, PS. 1948. Limnological methods. Blakiston, Philadelphia, Pa. https://doi.org/10.1126/science.108.2817.727.b
26. Boyd CE. Solar Radiation and Water Temperature. In: Water Quality. Springer, Cham. 2020. pp 21-39. https://doi.org/10.1007/978-3-030-23335-8_2.
27. Baird RB, Eaton AD, Rice EW. Standard Methods for the Examination of Water and Wastewater 23rd ed. Am. Public Health Assoc. AWWA. Environmental Federation Publishers: Washington, DC, 2017.
28. Edmondson WT. Fresh water biology 2nd ed. New York: Wiley and Sons-Inc., 1959, p.1248.
29. Pontin RM. A key to the freshwater planktonic and semi-planktonic rotifera of the British Isles. Freshwater Biological Association Sci. Puble., No. 38. 1978. https://catalogue.nla.gov.au/catalog/2616267.
30. Smith DG. Pennak's Freshwater Invertebrates of the United States: Porifera to Crustacea, 4th ed., New York: John Wiley and Sons. 2001. p. 654. https://doi.org/10.1086/345207
31. Omori M, Ikeda T. Methods in marine zooplankton ecology. New York: John-Wiely and Sone Inc. 1984. p. 332. ISBN: 9780894646539, 0894646532. https://search.worldcat.org/en/title/24143788
32. Serafim Jr M, Lansac-Tôha FA, Paggi JC, Velho LFM, Robertson B. Cladocera fauna composition in a river-lagoon system of the upper Paraná River floodplain, with a new record for Brazil, Braz. J. Biol. 2003; 63: 349-356. https://pubmed.ncbi.nlm.nih.gov/14509857/
33. Jaccard P. Nouvelles researches sur la distribution florale. Bull. Soc. vaudoise sci. nat. 1908; 44: 223-270. http://dx.doi.org/10.5169/seals-268384
34. Neves IF, Rocha O, Roche KF, Pinto AA. Zooplankton community structure of two marginal lakes of the river Cuiabá (Mato Grosso, Brazil) with analysis of Rotifera and Cladocera diversity. Brazilian J. Biol. 2003; 63: 329-343. https://doi.org/10.1590/S1519-69842003000200018
35. Margalef R. Perspectives in ecological theory. Chicago, USA: University of Chicago Press. 1968. P111. https://doi.org/10.4319/lo.1969.14.2.0313
36. Shannon CE, Weaver W. The mathematical theory of communication. Urbana, USA: University of Illinois Press. 1949. ISBN 0-252-72548-4. https://pure.mpg.de/pubman/item/item_2383164_3/component/file_2383163/Shannon_Weaver_1949_Mathematical.pdf
37. Proto-Neto VF. Zooplankton as bioindicator of environmental quality in the Tamandane Reff system (Pernambuco-Brazil): Anthropogenic influences and interaction with mangroves. Doctoral dissertation, Bremen Univ., Brazil, 2003. https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000006998
38. Charlotte S, Dronkers J. Measurements of biodiversity. Ecology. 2025; 101(6): 1455–1465. http://www.coastalwiki.org/wiki/Measurements_of_biodiversity
39. Hussain NA, Ali AH, Lazem LF. Ecological indices of key biological groups in Southern Iraqi marshland during 2005-2007. Mesopot. J. Mar. Sci. 2012; 27(2): 112–125. https://doi.org/10.58629/MJMS.V27I2.162
40. Fedor P, Zvaríková M. Biodiversity Indices. In: Fath, B. Encyclopedia of Ecology. 2nd ed. Elsevier; 2019: 337-346. https://shop.elsevier.com/books/encyclopedia-of-ecology/fath/978-0-444-63768-0
41. Bynum N. Biodiversity. 1st ed. LibreTexts, Duke University. United States. 2021. https://bio.libretexts.org/@go/page/17343
42. Magurran AE. Measuring biological diversity. Australia: Blackwell Publishing, (Chapter 8: 100-130). 2004, 215pp.
43. Hedayati A, Pouladi M, Vaziri A, Qadermarzi A. Seasonal variations in abundance and diversity of copepods in Mond River estuary, Bushehr, Persian Gulf, Biodiv. 2017; 18 (2): 447-452. https://biodiversitas.mipa.uns.ac.id/D/D1802/D180201.pdf
44. Santos JS, Simões NR, Sonoda, SL. Spatial distribution and temporal variation of microcrustaceans assembly (Cladocera and Copepoda) in different compartments of a reservoir in the brazilian semiarid region. Acta Limnol. Bras. 2018; 30: e108. https://doi.org/10.1590/S2179-975X9616
45. Charlotte S. Measurements of biodiversity. Ecology. 2020; 101(6): 1455-1465.
46. Abbas MF, Salman SD, Al-Mayahy SH. Diversity and seasonal changes of zooplankton communities in the Shatt Al-Arab River, Basrah, Iraq, with a special reference to Cladocera. Mesopotamian Journal of Marine Science (MJMS). 2014; 29: 51-70. https://doi.org/10.58629/mjms.v29i1.140
47. Ajeel, SG, Abbas MF. Seasonal variations of the Cladocerans in the Shatt Al-Arab River, Southern Iraq, Iraqi J. of Aquacult. 2016; 13: 66-85. https://doi.org/10.58629/ijaq.v13i1.124
48. Sabri AW, Ali ZH, Shawkat SF, Thejar LA, Kassim TI, Rasheed KA. Zooplankton population in the river Tigris – effects of Samarra impoundment. Regulated Rivers: Research and Management. 1993; 8(3): 237-250. https://doi.org/10.1002/rrr.3450080304
49. Choedchim W. and Maiphae S. Diversity and distribution of the cladocerans (Crustacea, Branchiopoda) in Thailand. Biodivers. Data J. 2023; 11, e103553. https://doi.org/10.3897/BDJ.11.e103553
50. Traykov I, Boyanovsky B. Zivkov M. Composition and abundance of zooplankton in Kardzhaly Reservoir. Bulg. J. Agric. Sci. 2011; 17(4): 501-511. https://www.agrojournal.org/17/04-13-11.pdf
51. Nandini S, Merino-Ibarra, M, Sarma SSS. Seasonal changes in the zooplankton abundances of the reservoir Valle de Bravo (State of Mexico, Mexico). Lake Reserv. Manag. 2008; 24(4): 321-330. https://doi.org/10.1080/07438140809354842
52. Saler S. Diversity and abundance of zooplankton in Medik Reservoir of Turkey. Maejo Int. J. Sci. Technol. 2017; 11(2): 126. https://mijst.mju.ac.th/vol11/126-132.pdf
53. Güher H, Öterler B. The diversity, abundance and seasonal distribution of planktonic microcrustacean (Copepoda, Cladocera) in Kayalıköy Reservoir (Kırklareli/Turkey). Ege J. Fish. Aquat. Sci. 2021; 38(1): 21–29. https://doi.org/10.12714/egejfas.38.1.03
54. Abbas MI, Talib AH. Community Structure of Zooplankton and Water Quality Assessment of Tigris River within Baghdad/Iraq. Appl. Ecol. Environ. Res. 2018; 6: 63-69. http://pubs.sciepub.com/aees/6/2/4
55. Viroux L. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river, J. Plankton Res. 2002; 24: 281-292. https://doi.org/10.1093/plankt/24.4.281
56. Di Genaro AC, Sendacz S, Moraes MDAB, Mercante, CTJ. Dynamics of cladocera community in a tropical hypereutrophic environment (Garças Reservoir, São Paulo, Brazil). J. Water Resour. Prot. 2015; 7(05): 379-388. http://dx.doi.org/10.4236/jwarp.2015.75030
57. Longato LO, Ferreira IEDP, Perbiche-Neves G. Relationship between zooplankton richness and area in Brazilian lakes: comparing natural and artificial lakes and trends. Acta Limnol. Bras. 2018; 30: e309. https://doi.org/10.1590/S2179-975X1518
58. Wu L, Zhou M, Shen Z, Cui Y, Feng W. Spatio-temporal variations in zooplankton community structure and water quality in a Chinese Eutrophic river, Appl. Ecol. Environ. Re. 2017; 15(3): 1417-1442. http://dx.doi.org/10.15666/aeer/1503_14171442
59. Kamboj V, Kamboj N. Spatial and temporal variation of zooplankton assemblage in the mining impacted stretch of Ganga River, Uttarakhand, India, Environ. Sci. Pollut. Res. 2020; 27(21): 27135-27146. https://doi.org/10.1007/s11356-020-09089-1.
60. Majeed OS, Nashaat MR. Zooplankton diversity within Samarra Reservoir, Iraq: a comprehensive survey. Israa Univ J Appl Sci, 2025; 8(2): 1-20. https://iujas.israa.edu.ps/volume8-issue2/225
61. Amar MEB, Amar SB, Amar Y. Comparative Study of Zooplankton Dynamics (Cladocerans and Rotifers) in Relation to Abiotic Parameters in Sidi Mhamed Benali Lake and Sarno Dam (Western Algeria). Egypt. J. Aquat. Biol. Fish. 2023; 27(6): 329-342. https://dx.doi.org/10.21608/ejabf.2023.329200
62. Castilho-Noll MSM, Câmara CF, Chicone MF, Shibata ÉH. Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil. Biota Neotrop. 2010; 10: 21-30. https://www.biotaneotropica.org.br/BN/article/view/597
63. Işkın U, Filiz N, Cao Y, Neif, ÉM, Öğlü B, Lauridsen TL, Davidson TA, Søndergaard M, Tav ÜN, sano˘glu, Beklio˘glu M, Jeppesen E. Impact of nutrients, temperatures, and a heat wave on zooplankton community structure: an experimental approach. Water. 2020; 12(12): 3416. https://doi.org/10.3390/w12123416
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





