Note on epsilon-cyclic operator
DOI:
https://doi.org/10.30526/39.1.4224Keywords:
Keywords:-cyclic operator, hypercyclic operator, diskcyclic operators, -hypercyclic operator, -diskcyclic operator.Abstract
In this paper, we investigated the concept of ε-diskcyclic operators on a separable infinite-dimensional Hilbert space . A bounded linear operator is called -diskcyclic if there exists a vector in such that its disk orbit visits every cone of aperture . That is, for every non-zero vector in , there exist in where and in such that . Such a vector is then called an ε-diskcyclic vector for .
We established several properties of ε-diskcyclic operators. In particular, we showed that every -diskcyclic operator is cyclic. Moreover, we examined the relationship between ε-diskcyclic vectors of and eigenvectors of the adjoint operator that cannot be orthogonal to each other. We also proved that if is a bounded linear operator on ; , then the direct sum is -diskcyclic provided each is -diskcyclic. Finally, we presented a criterion for determining -diskcyclicity
References
1.Halmos PR. A Hilbert space problem book. New York: Springer; 1982. https://doi.org/10.1007/978-1-4684-9330-6
2.Yin Z, Chen Y, Xiang Q. Dynamics of operator-weighted shifts. Int J Bifurcat Chaos. 2019; 29(08):1950110. https://doi.org/10.1142/S0218127419501104
3.Beauzamy B. Introduction to operator theory and invariant subspaces. Elsevier; 1988.
4.Mourchid SE. On a hypercyclicity criterion for strongly continuous semigroups. Discrete Contin Dyn Syst. 2005; 13(2):271-275. https://doi.org/10.3934/dcds.2005.13.271
5.Aiena P, Burderi F, Triolo S. Limits of hypercyclic operators on Hilbert spaces. J Math Anal Appl. 2025;548(2):129-184. https://doi.org/10.1016/j.jmaa.2025.129484
6.Bermúdez T, Bonilla A, Peris A. On hypercyclicity and supercyclicity criteria. Bull Aust Math Soc. 2004 ;70(1):45-54. https://doi.org/10.1017/S0004972700035802
7.Badea C, Grivaux S, Müller V. Epsilon-hypercyclic operators. Ergodic Theory Dyn Syst. 2010;30(6):1597-606.
8.Hilden HM, Wallen LJ. Some cyclic and non-cyclic vectors of certain operators. Indiana Univ Math J. 1974;23(7):557-565. https://doi.org/10.1512/IUMJ.1974.23.23046
9.Alves TR, Botelho G, Fávaro VV. On frequently supercyclic operators and an F_Γ-hypercyclicity criterior with applications. arXiv [Preprint]. 2024. https://doi.org/10.48550/arXiv.2411.03179
10.González M, León-Saavedra F, Rosa MP. Supercyclic properties of extended eigenoperators of the differentiation operator on the space of entire functions. Results Math. 2025 ;80(1):2. https://doi.org/10.1007/s00025-024-02317-x
11.Kumar A, Srivastava S. Supercyclicity criteria for C_0 semigroups. Adv Oper Theory. 2020;5(4):1646-1666. https://doi.org/10.1007/s43036-020-00073-7
12,Amouch M, Benchihe O. Some versions of supercyclicity for a set of operators. Filomat. 2021;35(5):1619-1627.
13,Kubrusly CS, Duggal BP. Weakly Supercyclic Power Bounded Operators of Class C_1. Adv Math Sci Appl.2021;30(2): 571–585.
14.D'Aniello, E. and Maiuriello, M., 2024. R-and C- supercyclicity for some classes of operators. arXiv [Preprint]. 2024..https://doi.org/10.48550/arXiv.2404.04028
15.Kubrusly CS. Denseness of sets of supercyclic vectors. Math Proc R Ir Acad. 2020; 120(1):7-18
16.Feng G, Li P. Hypercyclicity and Supercyclicity for Upper Triangular Operator Matrices. Acta Math Sin (Engl Ser). 2025 ;41(7):1775-1788. https://doi.org/10.1007/s10114-025-3332-1
17.Rolewicz S. On orbits of elements. Stud Math. 1969;32(1):17-22.
18.Abdulkareem R, Jamil Z.Z. On The Diskcyclic Criterions. Iraqi J Sci. 2020; 61(10):2651-2654. https://doi.org/10.24996/ijs.2020.61.10.21
19.Karimi L. Hypercyclicity of adjoint of convex weighted shift and multiplication operators on Hilbert spaces. Math Comput Sci. 2021;2(4):52-59. https://doi.org/10.30511/mcs.2021.539285.1039
20.Ech-Chakouri A, Zguitti H. On the Codisk-cyclic Linear Relations. Methods Funct Anal Topology. 2024;30(01):12-30. https://doi.org/10.31392/MFAT-npu26_1-2.2024.02
21.Amouch M, Benchiheb O. Diskcyclicity of sets of operators and applications. Acta Math Sin (Engl Ser). 2020;36(11):1203-1220. https://doi.org/10.1007/s10114-020-9307-3
22.Wang Y, Zeng HG. Disk-cyclic and codisk-cyclic weighted pseudo-shifts. Bull Belg Math Soc Simon Stevin.2018;25(2):209 –222. https://doi.org/10.36045/bbms/1530065010
23.Abu Jahel AM, As' ad AA. Characterization of diskcyclic operators. IUG J Nat Stud. 2021;29(1): 38-48.https://doi.org/10.33976/IUGNS.29.1/2021/4
24.Moosapoor M. Diskcyclic c₀-semigroups and diskcyclicity criteria. Nonlinear Funct Anal Appl. 2022;27(1):111-119. https://doi.org/10.22771/nfaa.2022.27.01.07
25.Bamerni N. Subspace diskcyclic tuples of operators on Banach spaces. Ital J Pure Appl Math.2023;50:159-167.
26.Mukhamedov F, Khakimov O, Souissi A. Supercyclic and Hypercyclic Generalized Weighted Backward Shifts over a Non-Archimedean c_0 (N) Space. Mathematics. 2021 ;9(22):2986. https://doi.org/10.3390/math9222986
27.Abu Jahel AM, As’ad Y. Epsilon-Diskcyclic Operators. Gen Lett Math (GLM). 2022 ;12(2):49-56. https://doi.org/10.31559/glm2022.12.2.1
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





