Green Synthesis and Characterization of Vanadium Oxide Nanoparticles using Plant Extract

Authors

DOI:

https://doi.org/10.30526/38.2.3762

Keywords:

MTT assay, Scanning electron microscopy, Transmission electron microscopy, Vanadium nanoparticles, X-ray diffraction

Abstract

  This study employed the biosynthetic technique for creating vanadium nanoparticles (VNPs), which are affordable and user-friendly; VNPs was synthesized using vanadium sulfate (VOSO4.H2O) and a plant extract derived from Fumaria Strumii Opiz (E2) at a NaOH concentration of 0.1 M. This study aims to investigate the potential applications of utilizing an adsorbent for metal ions to achieve environmentally friendly production and assess its antibacterial activity and cytotoxicity. The reaction was conducted in an alkaline environment with a pH range of 8–12. The resulting product was subjected to various characterization techniques, including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, x-ray diffraction (XRD), transmission- and scanning- electron microscopy (TEM, SEM). The measurement of crystal size in NPs was conducted using Debye Scherer's equation in x-ray diffraction, resulting in a value of 16.06 nm. On the other hand, in the same direction, the size of VO2 NPs was determined through SEM and TEM. Also, this work investigates the antibacterial properties of VO2 nanoparticles against four bacterial strains, comprising two gram-positive-negative types and one fungus strain, to evaluate its antifungal efficacy. Notably, the application of newly produced VNPs has demonstrated a significant potential for anticancer activity in cell lines. The SW480 cell line was subjected to MTT assay at various concentrations. The results suggested a positive correlation between concentration and percentage of inhibition. By calculating the IC50 value, which was determined to be 60.3 mg/mL, it can be inferred that this NPs holds potential for targeted therapy in colon cancer treatment. Also, the present study investigates the antibacterial activity of VNPs synthesized using a biosynthetic approach. The cell line SW480 was utilized to evaluate the efficacy of the synthesized VNPs; XRD was employed to analyze the structural properties of the synthesized material.

Author Biographies

  • Saba H. Mahdi, Department of Chemistry College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

    Department of Chemistry College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

  • Lekaa K. Abdul karem, Department of Chemistry College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

    Department of Chemistry College of Education for Pure Sciences Ibn Al-Haitham ,University of Baghdad, Baghdad, Iraq.

  • Ahmed M. Khalil, Photochemistry Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt.

    Photochemistry Department, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt.

References

1. Farooqi ZU, Qadeer A, Hussain MM, Zeeshan N, Ilic P. Characterization and physicochemical properties of nanomaterials. In Nanomaterials: Synthesis, characterization, hazards and safety. Elsevier; 2021, pp. 97-121. https://dx.doi.org/10.1016/B978-0-12-823823-3.00005-7.

2. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021; 199(1):344-370.

https://doi.org/10.1007/s12011-020-02138-3.

3. Barik TK, Maity GC, Gupta P, Mohan L, Santra TS. Nanomaterials: an introduction. In book: Nanomaterials and their biomedical applications. 2021, p.1-27.

https://doi.org/10.1007/978-981-33-6252-9_1.

4. Singh BK, Lee S, Na K. An overview on metal-related catalysts: Metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Metals. 2020; 39:751-766. https://doi.org/10.1007/s12598-019-01205-6.

5. Salem SS, Fouda MM, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci. 2021; 32:351-361. https://doi.org/10.1007/s10876-020-01794-8.

6. Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim MM, Rahamathulla M, Hani U, Shakeel F. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq. 2022; 348:118008.https://doi.org/10.1016/j.molliq.2021.118008.

7. Pérez-Hernández H, Pérez-Moreno A, Sarabia-Castillo CR, García-Mayagoitia S, Medina-Pérez G, López-Valdez F, Campos-Montiel RG, Jayanta-Kumar P, Fernández-Luqueño F. Ecological drawbacks of nanomaterials produced on an industrial scale: collateral effect on human and environmental health. Water Air Soil Poll. 2021; 232(435):1-33. https://doi.org/10.1007/s11270-021-05370-2.

8. Abd Elkodous M, El-Husseiny HM, El-Sayyad GS, Hashem AH, Doghish AS, Elfadil D, Radwan Y, El-Zeiny HM, Bedair H, Ikhdair OA, Hashim H. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. NTREV. 2021; 10(1):1662-739. https://doi.org/10.1515/ntrev-2021-0099.

9. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules. 2019; 25(1):112.

112, https://doi.org/10.3390/molecules25010112.

10. Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, Zhang X, Norris PM, Markides CN, Mahian O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys Rep. 2020; 843:1-81.https://doi.org/10.1016/j.physrep .2019.12.001.

11. Hyman P, Denyes J. Bacteriophages in nanotechnology: History and future. In book: Bacteriophages: Biology, technology, therapy. 2021; 657-587. https://doi.org/10.1007/978-3-319-41986-2_22-1.

12. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019; 1:607. https://doi.org/10.1007/s42452-019-0592-3.

13. Kareem EA, Sultan AE, Oraibi HM. Synthesis and characterization of silver nanoparticles: A review. IHJPAS. 2023; 36(3):177-200. https://jih.uobaghdad.edu.iq/index.php/j/article/view/3050.

14. Wang J, Yuan Q, Morovvati H, Goorani S. Green synthesis, characterization and anti-atherosclerotic properties of vanadium nanoparticles. Inorg Chem Commun.. 2022; 146(9226):110092. https://doi.org/10.1016/j.inoche.2022.110092.

15. Barreto A, Santos J, Amorim MJ, Maria VL. Environmental hazards of boron and vanadium nanoparticles in the terrestrial ecosystem—A case study with enchytraeus crypticus. Nanomaterials. 2021; 11(8):1937. https://doi.org/10.3390/nano11081937.

16. Bueloni B, Sanna D, Garribba E, Castro GR, León IE, Islan GA. Design of nalidixic acid-vanadium complex loaded into chitosan hybrid nanoparticles as smart strategy to inhibit bacterial growth and quorum sensing. Int J Biol Macromol. 2020; 161:1568-80.https://doi.org/10.1016/j.ijbiomac.2020.07.304.

17. Diniz MO, Golin AF, Santos MD, Bianchi RF, Guerra EM. Improving performance of polymer-based ammonia gas sensor using POMA/V2O5 hybrid films. Org Electron. 2019; 67:215-221. https://doi.org/10.1016/j.orgel.2019.01.039.

18. Dadkhah M, Tulliani JM. Green synthesis of metal oxides semiconductors for gas sensing applications. Sensors. 2022; 22(13):4669. https://doi.org/10.3390/s22134669.

19. Ali AT, Karem LK. Biosynthesis, characterization, adsorption and antimicrobial studies of vanadium oxide nanoparticles using punica granatum extract. Baghdad Sci J. 2024; 21(2):0410.

https://doi.org/10.21123/bsj.2023.8114.

20. Huang Y, Zhu C, Xie R, Ni M. Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J Exp Nanosci. 2021; 16(1):368-381.‏ https://doi.org/10.1080/17458080.2021.1975037.

21. Li C, Zhang Y, Li M, Zhang H, Zhu Z, Xue Y. Fumaria officinalis-assisted synthesis of manganese nanoparticles as an anti-human gastric cancer agent. Arab J Chem. 2021; 14(10):103309.

https://doi.org/10.1016/j.arabjc.2021.103309.

22. Adham AN, Naqishbandi AM, Efferth T. Cytotoxicity and apoptosis induction by Fumaria officinalis extracts in leukemia and multiple myeloma cell lines. J Ethnopharmacol. 2021; 266:113458. https://doi.org/10.1016/j.jep.2020.113458.

23. Hamid A, Haq S, Ur Rehman S, Akhter K, Rehman W, Waseem M, Ud Din S, Hafeez M, Khan A, Shah A. Calcination temperature-driven antibacterial and antioxidant activities of fumaria indica mediated copper oxide nanoparticles: Characterization. Chem Pap. 2021; 75(20):4189-4198.

https://doi.org/10.1007/s11696-021-01650-7.

24. Ghani S, Rafiee B, Bahrami S, Mokhtari A, Aghamiri S, Yarian F. Green synthesis of silver nanoparticles using the plant extracts of vitex agnus castus L: An ecofriendly approach to overcome antibiotic resistance. Int J Prev Med. 2022;13:133. https://doi.org/10.4103/ijpvm.ijpvm_140_22.

25. Al Jabbar JL, Apriandanu DO, Yulizar Y, Sudirman S. Synthesis, characterisation and catalytic activity of V2O5 nanoparticles using Foeniculum vulgare stem extract. In IOP Conference Series: MSE. 2020; 763(1):012031. https://doi.org/10.1088/1757-899X/763/1/012031.

26. Amer AA. Biological evaluation and antioxidant studies of NiO, PdO and Pt nanoparticles synthesized from a new Schiff base complexes. IHJPAS. 2022; 35(4):170-182.

https://doi.org/10.30526/35.4.2864.

27. Mahdi SH, Karem LA. Synthesis, spectral and biochemical studies of new complexes of mixed ligand Schiff base and anthranilic acid. Orient J Chem. 2018; 34(3):1565-172.

http://dx.doi.org/10.13005/ojc/340349.

28. Abeed BS, Al-Shmgani HS, Khalil KA, Mohammed HA. Evaluation of the potential protective role of galangin associated with gold nanoparticles in the histological and functional structure of kidneys of adult male albino mice Mus musculus administration with carbon tetrachloride. IHJPAS. 2023; 36(3):72-84. https://doi.org/10.30526/36.3.3250.

29. Zhang Y, Tan X, Meng C. The influence of VO (B) nanobelts on thermal decomposition of ammonium perchlorate. Mater Sci-Pol. 2015; 33(3):560-565. http//: 10.1515/msp-2015-0080.

30. Afify HH, Hassan SA, Obaida M, Abouelsayed A. Influence of annealing on the optical properties of monoclinic vanadium oxide VO2 prepared in nanoscale by hydrothermal technique. Physica E Low Dimens Syst Nanostruct. 2019; 114:113610. https:// doi.org /10. 1016 /j.physe.2019.113610.

31. Subramanian M, Dhayabaran VV, Shanmugavadivel M. Room temperature fiber optic gas sensor technology based on nanocrystalline Ba3(VO4)2: Design, spectral and surface science. Mate Res Bull. 2019; 119:110560. https://doi.org/10.1016/ j. materresbull . 2019.110560.

32. Jaya RP. Porous concrete pavement containing nanosilica from black rice husk ash. In New Materials in Civil Engineering 2020; pp. 493-527. https: //doi.org/ 10.1016 /B978-0-12-818961-0.00014-4.

33. Al-Bahadili ZR, Al-Hamdani AA, Rashid FA, Al-Zubaidi LA, Ibrahim SM. An evaluation of the activity of prepared zinc nanoparticles with extracted alfalfa plant in the treatment of heavy metals. Baghdad Sci J. 2022; 19(6):1399. https://dx.doi.org/10.21123/bsj.2022.

34. Saad FA, El-Ghamry HA, Kassem MA, Khedr AM. Nano-synthesis, Biological Efficiency and DNA binding affinity of new homo-binuclear metal complexes with sulfa azo dye based ligand for further pharmaceutical applications. J Inorg Organomet Polym Mater. 2019; 29: 1337-1348.

https://doi.org/10.1007/s10904-019-01098-z.

35. Abdalsahib NM, Karem LK. Preparation, characterization, antioxidant and antibacterial studies of new metal (ii) complexes with Schiff base for 3-amino-1-phenyl-2-pyrazoline-5-one. IJDDT. 2023;13(1): 290-296. https://doi.org/10.25258/ijddt.13. 2.33.

36. Mahdi SH, Karem LK. Synthesis, physicochemical studies and biological estimation of new mixed ligand complexes from hetrocyclic compounds. IJPR. 2020; 2(1):1734-1740.

https://doi.org/10.31838/ijpr/2020.SP1.267.

37. Alsahib SA. Characterization and biological activity of some new derivatives derived from sulfamethoxazole compound. Baghdad Sci J. 2020; 17(2):471-480.

http://dx.doi.org/10.21123/ bsj.2020.17.2.0471.

38. Mohan B, Shaalan N. Synthesis, spectroscopic, and biological activity study for new complexes of some metal ions with Schiff bases derived from 2-hydroxy naphthaldehyde with 2-amine benzhydrazide. IHJPAS. 2023; 36(1):208-224. http://doi.org/10.30526/36.1.2978.

39. Baqer SR, Alsammarraie A, Alias M, Al-Halbosiy M, Sadiq A. In vitro cytotoxicity study of pt nanoparticles decorated TiO2 nanotube array. Baghdad Sci J. 2020; 17(4):1169.

https://doi.org/10.21123/bsj.2020.17.4.1169.

40. Naji SH, Karim LK, Mousa FH. Synthesis, spectroscopic and biological studies of a new some complexes with n-pyridin-2-ylmethyl-benzene-1,2 diamine. IHJPAS. 2013; 26(1):193-207.

41. Abdalsahib, N.M.; Karem, L.K.A. Synthesis, characterization, antioxidant and antibacterial studies for new Schiff base complexes derived from 4-bromo-O-toluiodine. IJDDT. 2023; 13(2):679-685.

http://doi.org/10.25258/ijddt.13.2.33.

42. Carreño EA, Alberto AVP, De Souza CAM, De Mello HL, Henriques-Pons A, Anastacio Alves L. Considerations and technical pitfalls in the employment of the MTT assay to evaluate photosensitizers for photodynamic. Appl Sci. 2021; 11(6):2603. https://doi.org/10.3390/app11062603.

Downloads

Published

20-Apr-2025

Issue

Section

Chemistry

How to Cite

[1]
Mahdi, S.H. et al. 2025. Green Synthesis and Characterization of Vanadium Oxide Nanoparticles using Plant Extract. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 291–303. DOI:https://doi.org/10.30526/38.2.3762.