Synthesis, Characterization and Photocatalytic Activity of ZrO2 Nanoparticles using Mint Extract
DOI:
https://doi.org/10.30526/38.4.4160Keywords:
Microscopy, Photo-catalytic activities, Transmission electron, X-ray diffraction, Zirconium oxide nanoparticlesAbstract
This work describes a green synthesis route for zirconium oxide nanoparticles (ZrO2 NPs) by using Zr sulfate and mint extract. This method is distinguished from other processes (physical and chemical) by its simplicity, cost-effectiveness, and low potential risks during preparation. Multiple techniques have been used to characterize and analyze ZrO2 NPs, including Fourier transform infrared and ultraviolet visible spectra, crystal size calculation by X-ray diffraction, scanning electron and atomic force microscopes, energy-dispersive X-ray, and Zeta potential. Kinetic stability of the ZrO2 NPs system, as indicated by the Zeta potential of -25.8 mV, suggests a long-term persistence and high surface charge. Finally, photo-catalytic activities of zirconium oxide NPs were examined using methylene blue dye. The results showed that the dye's degradation efficiency under light irradiation was 96.88%, demonstrating its significant photo-catalytic potential. The x-ray diffraction analysis of the crystal size of ZrO2 NPs, using Debye Scherrer's equation, yielded a value of 18.78 nm. The prepared ZrO2 NPs were tetragonal
References
1. Ahmed KA, Huang K. Formation of Mn3O4 nanobelts through the solvothermal process and their photocatalytic property. Arab J Chem. 2019; 12(3):429-439. https://doi.org/10.1016/j.arabjc.2014.08.014.
2. Bello A, Fashedemi OO, Lekitima JN, Fabiane M, Dodoo-Arhin D, Ozoemena KI, Gogotsi Y, Charlie Johnson AT, Manyala N. High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Advances. 2013; 3(8):082118. https://doi.org/10.1063/1.4819270.
3. Hafez AA, Naserzadeh P, Ashtari K, Mortazavian AM, Salimi A. Protection of manganese oxide nanoparticles-induced liver and kidney damage by vitamin D. RTP. 2018; 98:240-244. https://doi.org/10.1016/j.yrtph.2018.08.005.
4. Abduljabar MA, Merza SH. Graphene oxide decorated with nickel cobaltite nanoparticles as an adsorbent for cationic methyl green dye: Kinetic, isotherm, and thermodynamic studies. Baghdad Sci J. 2024; 21(9):2853. https://doi.org/10.21123/bsj.2024.8742.
5. Ahmad KS, Yaqoob S, Gul MM. Dynamic green synthesis of iron oxide and manganese oxide nanoparticles and their cogent antimicrobial, environmental and electrical applications. Rev Inorg Chem. 2022; 42(3):239-263. https://doi.org/10.1515/revic-2021-0033.
6. Perachiselvi M, Bagavathy MS, Samraj JJ, Pushpalaksmi E, Annadurai G. Synthesis and characterization of Mn3O4 nanoparticles for biological studies. Appl Ecol Environ Sci. 2020; 8(5): 273-277. https://doi.org/10.12691/aees-8-5-13.
7. Fatin A. Al-jubouri, Basim I. Al-Abdaly. Anti-oxidant and anti-microbial activities of [ZnO: CoO/ Eugenol] and [ZnO:Fe2O3/Eugenol] nanocomposites. IHJPAS. 2024; 37(1):251-64. https://jih.uobaghdad.edu.iq/index.php/j/article/view/3233.
8. Fernandes C, Benfeito S, Fonseca A, Oliveira C, Garrido J, Garrido EM, Borges F. Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions. In book: Nanotechnology in the agri-food industry (Muti-Volume SET I-X) Edition: 1st Publisher: Elsevier Editors: Alexandru Grumezescu, Ecaterina Andronescu. 2017; 527-565. https://doi.org/10.1016/B978-0-12-804303-5.00015-8.
9. Frewer LJ, Gupta N, George S, Fischer AR, Giles EL, Coles D. Consumer attitudes towards nanotechnologies applied to food production. TIFS. 2014; 40(2):211-225. https://doi.org/10.1016/j.tifs.2014.06.005.
10. Nande A, Raut S, Michalska-Domanska M, Dhoble SJ. Green synthesis of nanomaterials using plant extract: a review. Curr Pharm Biotechnol. 2021; 22(13):1794-1811. https://doi.org/10.2174/1389201021666201117121452.
11. Sukhdev A, Challa M, Narayani L, Manjunatha AS, Deepthi PR, Angadi JV, Kumar PM, Pasha M. Synthesis, phase transformation, and morphology of hausmannite Mn3O4 nanoparticles: Photocatalytic and antibacterial investigations. Heliyon. 2020; 6(1):1-18. https://doi.org/10.1016/j.heliyon.2020.e03245.
12. Jiménez-Pérez ZE, Singh P, Kim YJ, Mathiyalagan R, Kim DH, Lee MH, Yang DC. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J Ginseng Res. 2018; 42(3):327-333. https://doi.org/10.1016/j.jgr.2017.04.003.
13. Khan S, Ansari AA, Khan AA, Abdulla M, Al-Obeed O, Ahmad R. In vitro evaluation of anticancer and biological activities of synthesized manganese oxide nanoparticles. Med Chem Comm. 2016; 7(8): 1647-1653. https://doi.org/10.1039/C6MD00219F.
14. Alagarsamy A, Chandrasekaran S, Manikandan A. Green synthesis and characterization studies of biogenic zirconium oxide (ZrO2) nanoparticles for adsorptive removal of methylene blue dye. J Mol Struct. 2022; 1247:131275. https://doi.org/10.1016/j.molstruc.2021.131275.
15. Vijayakumar A, Chacko A, Jayaprakash P. Green synthesis of Mn3O4 nanoparticles in zinc chloride: Urea: acetamide deep eutectic solvent-characterization, fluorescence sensing, antibacterial and antioxidant properties. J Mol Struct. 2025; 1321:139833. https://doi.org/10.1016/j.molstruc.2024.139833.
16. Sackey J, Akbari M, Morad R, Bashir AK, Ndiaye NM, Matinise N, Maaza M. Molecular dynamics and bio-synthesis of phoenix dactylifera mediated Mn3O4 nanoparticles: Electrochemical application. J Alloys Compd. 2021; 854:156987. https://doi.org/10.1016/j.jallcom.2020.156987.
17. Shaik MR, Syed R, Adil SF, Kuniyil M, Khan M, Alqahtani MS, Shaik JP, Siddiqui MR, Al-Warthan A, Sharaf MA, Abdelgawad A. Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J Biol Sci. 2021; 28(2):1196-1202. https://doi.org/10.1016/j.sjbs.2020.11.087.
18. Van Tran T, Nguyen DT, Kumar PS, Din AT, Qazaq AS, Vo DV. Green synthesis of Mn3O4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye. Environ Res. 2022; 214(2):113925. https://doi.org/10.1016/j.envres.2022.113925.
19. Wang Y, Hou C, Lin X, Jiang H, Zhang C, Liu G. Dye degradation studies of hausmannite manganese oxide (Mn3O4) nanoparticles synthesized by chemical method. Appl Phys A. 2021; 127(4):277. https://doi.org/10.1007/s00339-021-04428-6.
20. Majeed AH, Mohammed LA, Hammoodi OG, Sehgal S, Alheety MA, Saxena KK, Dadoosh SA, Mohammed IK, Jasim MM, Salmaan NU. A review on polyaniline: Synthesis, properties, nanocomposites, and electrochemical applications. Int J Polym Sci. 2022; 2022(1):9047554. https://doi.org/10.1155/2022/9047554.
21. Mizban RJ, Jassim WH. The effect of nano sized TiO2 particles on improving the stress resistance and thermal stability of unsaturated polyester. IHJPAS. 2025; 38(3):114-124. https://jih.uobaghdad.edu.iq/index.php/j/article/view/3949.
22. Ali AT, Ewies EF. Biosynthesis, characterization, adsorption and antimicrobial studies of zirconium oxide nanoparticles using punica granatum extract. IHJPAS. 2023; 36(4):262-673. https://doi.org/10.30526/36.4.3167 .
23. Gabriela ÁM, Gabriela MD, Luis AM, Reinaldo PR, Michael HM, Rodolfo GP, Roberto VB. Biosynthesis of silver nanoparticles using mint leaf extract (Mentha piperita) and their antibacterial activity. Adv Sci Eng Med. 2017; 9(11):914-923. https://doi.org/10.1166/asem.2017.2076.
24. Shanan ZJ, Majed MD, Ali HM. Effect of the concentration of copper on the properties of copper sulfide nanostructure. Baghdad Sci J. 2022; 19(1):0225. https://doi.org/10.21123/bsj.2022.19.1.0225.
25. Khalil AS, Al-Shabander BM, Yaseen MH. Photocatalytic activity of tetragonal BaTiO3 nanoparticles prepared by wet chemical method. In AIP Conference Proceedings 2021; 2372(1):130019. https://doi.org/10.1063/5.0066068.
26. Nassif II, Al-Shabander BM. Effects of MWCNTs on the tensile properties and thermal conductivity of BaTiO3/epoxy nanocomposites. Iraqi J Sci. 2020:2226-2231. https://doi.org/10.24996/ijs.2020.61.9.9.
27. Alrubaie HA, Alshabander BM. The effect of ZnO nanoparticles on the self-cleaning of ZnO/epoxy composites. In AIP Conference Proceedings 2022; 2437(1):020184. https://doi.org/10.1063/5.0094219.
28. 28. AL-Janabi QAA, Hind Suhail Abdulhay. Effects of chronic exposure for imidacloprid and nano-imidacloprid on some biochemical and hematological parameters in male rats. IHJPAS 2025; 38(2): 23-30. https://jih.uobaghdad.edu.iq/index.php/j/article/view/3643.
29. Ruaa MD, Alsahib SA, Ascar IF. Synthesis, characterization and cyclazation of pyran using Ag2O nanoparticle from natural source “ginger”. Iraqi J Agric Sci. 2021; 52(5):1171-1184. https://doi.org/10.36103/ijas.v52i5.1455.
30. Al-Bahadili ZR, Al-Hamdani AA, Rashid FA, Al-Zubaidi LA, Ibrahim SM. An evaluation of the activity of prepared zinc nanoparticles with extracted alfalfa plant in the treatment of heavy metals. Baghdad Sci J. 2022; 19(6 (Suppl.)):1399. https://doi.org/10.21123/bsj.2022.7313.
31. Al-Saadi TM. Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method. IHJPAS. 2022; 35(4):94-103. https://doi.org/10.30526/35.4.2872.
32. Al-Saadi TM, Kamil ZA. Study the effect of manganese ion doping on the size-strain of SnO2 nanoparticles using X-ray diffraction data. IHJPAS. 2023; 36(3):158-166. https://doi.org/10.30526/36.3.3052.
33. Hadi DJ, Younus MA. Bio synthesis, characterization, and evaluation of the anticancer activity of gold and silver nanoparticles and their polyacetal nanocomposite. Iraqi J Sci. 2024; 65(12):6824-6841. https://doi.org/10.24996/ijs.2024.65.12.4.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms